Skip to main content

Backtest trading strategies in Python

Project description

Backtesting.py

Build Status Code Coverage Backtesting on PyPI PyPI downloads GitHub Sponsors

Backtest trading strategies with Python.

Project website

Documentation

Star the project if you use it.

Installation

$ pip install backtesting

Usage

from backtesting import Backtest, Strategy
from backtesting.lib import crossover

from backtesting.test import SMA, GOOG


class SmaCross(Strategy):
    def init(self):
        price = self.data.Close
        self.ma1 = self.I(SMA, price, 10)
        self.ma2 = self.I(SMA, price, 20)

    def next(self):
        if crossover(self.ma1, self.ma2):
            self.buy()
        elif crossover(self.ma2, self.ma1):
            self.sell()


bt = Backtest(GOOG, SmaCross, commission=.002,
              exclusive_orders=True)
stats = bt.run()
bt.plot()

Results in:

Start                     2004-08-19 00:00:00
End                       2013-03-01 00:00:00
Duration                   3116 days 00:00:00
Exposure Time [%]                       94.27
Equity Final [$]                     68935.12
Equity Peak [$]                      68991.22
Return [%]                             589.35
Buy & Hold Return [%]                  703.46
Return (Ann.) [%]                       25.42
Volatility (Ann.) [%]                   38.43
Sharpe Ratio                             0.66
Sortino Ratio                            1.30
Calmar Ratio                             0.77
Max. Drawdown [%]                      -33.08
Avg. Drawdown [%]                       -5.58
Max. Drawdown Duration      688 days 00:00:00
Avg. Drawdown Duration       41 days 00:00:00
# Trades                                   93
Win Rate [%]                            53.76
Best Trade [%]                          57.12
Worst Trade [%]                        -16.63
Avg. Trade [%]                           1.96
Max. Trade Duration         121 days 00:00:00
Avg. Trade Duration          32 days 00:00:00
Profit Factor                            2.13
Expectancy [%]                           6.91
SQN                                      1.78
_strategy              SmaCross(n1=10, n2=20)
_equity_curve                          Equ...
_trades                       Size  EntryB...
dtype: object

plot of trading simulation

Find more usage examples in the documentation.

Features

  • Simple, well-documented API
  • Blazing fast execution
  • Built-in optimizer
  • Library of composable base strategies and utilities
  • Indicator-library-agnostic
  • Supports any financial instrument with candlestick data
  • Detailed results
  • Interactive visualizations

Alternatives

See alternatives.md for a list of alternative Python backtesting frameworks and related packages.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Backtesting-0.3.2.tar.gz (174.5 kB view details)

Uploaded Source

File details

Details for the file Backtesting-0.3.2.tar.gz.

File metadata

  • Download URL: Backtesting-0.3.2.tar.gz
  • Upload date:
  • Size: 174.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.3

File hashes

Hashes for Backtesting-0.3.2.tar.gz
Algorithm Hash digest
SHA256 85b0bfccc0cd98fc55712fbccbadcd990bfb42f8e41ee794de91c0a8d9b633b8
MD5 7004c66103eb1fd0f6ab53d404824506
BLAKE2b-256 057e0383e3cf95794d1d83398a0bcbf6bbc8db0dba0ac4e0b46ad03ba7543604

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page