Skip to main content

A fast and lightweight autoML system

Project description

PyPI version Build Python Version Downloads

FLAML - Fast and Lightweight AutoML


FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. It is fast and cheap. The simple and lightweight design makes it easy to extend, such as adding customized learners or metrics. FLAML is powered by a new, cost-effective hyperparameter optimization and learner selection method invented by Microsoft Research. FLAML is easy to use:

  • With three lines of code, you can start using this economical and fast AutoML engine as a scikit-learn style estimator.
from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")
  • You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a customized learner.
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
  • You can also run generic ray-tune style hyperparameter tuning for a custom function.
from flaml import tune
tune.run(train_with_config, config={…}, init_config={…}, time_budget_s=3600)

Installation

FLAML requires Python version >= 3.6. It can be installed from pip:

pip install flaml

To run the notebook example, install flaml with the [notebook] option:

pip install flaml[notebook]

Examples

A basic classification example.

from flaml import AutoML
from sklearn.datasets import load_iris
# Initialize an AutoML instance
automl = AutoML()
# Specify automl goal and constraint
automl_settings = {
    "time_budget": 10,  # in seconds
    "metric": 'accuracy',
    "task": 'classification',
    "log_file_name": "test/iris.log",
}
X_train, y_train = load_iris(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
                        **automl_settings)
# Predict
print(automl.predict_proba(X_train))
# Export the best model
print(automl.model)

A basic regression example.

from flaml import AutoML
from sklearn.datasets import load_boston
# Initialize an AutoML instance
automl = AutoML()
# Specify automl goal and constraint
automl_settings = {
    "time_budget": 10,  # in seconds
    "metric": 'r2',
    "task": 'regression',
    "log_file_name": "test/boston.log",
}
X_train, y_train = load_boston(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
                        **automl_settings)
# Predict
print(automl.predict(X_train))
# Export the best model
print(automl.model)

More examples can be found in notebooks.

Documentation

The API documentation is here.

Read more about the hyperparameter optimization methods in FLAML here. They can be used beyond the AutoML context. And they can be used in distributed HPO frameworks such as ray tune or nni.

For more technical details, please check our papers.

@inproceedings{wang2021flaml,
    title={FLAML: A Fast and Lightweight AutoML Library},
    author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},
    year={2021},
    booktitle={MLSys},
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Authors

  • Chi Wang
  • Qingyun Wu

Contributors (alphabetical order): Sebastien Bubeck, Surajit Chaudhuri, Nadiia Chepurko, Ofer Dekel, Alex Deng, Anshuman Dutt, Nicolo Fusi, Jianfeng Gao, Johannes Gehrke, Silu Huang, Dongwoo Kim, Christian Konig, John Langford, Amin Saied, Neil Tenenholtz, Markus Weimer, Haozhe Zhang, Erkang Zhu.

License

MIT License

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

FLAML-0.2.6.tar.gz (67.0 kB view details)

Uploaded Source

Built Distribution

FLAML-0.2.6-py3-none-any.whl (81.9 kB view details)

Uploaded Python 3

File details

Details for the file FLAML-0.2.6.tar.gz.

File metadata

  • Download URL: FLAML-0.2.6.tar.gz
  • Upload date:
  • Size: 67.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.7.7

File hashes

Hashes for FLAML-0.2.6.tar.gz
Algorithm Hash digest
SHA256 aba034e7027dc172d62fc51a120d7c865b51cf3da7f21edaf5c5c50565ac01d0
MD5 4c38d164cece3df775bcd09707d25bc0
BLAKE2b-256 0df8c370b8588d7cbc16c7e928ee9d9da90666d78d5b99d225f6e27314fa163f

See more details on using hashes here.

File details

Details for the file FLAML-0.2.6-py3-none-any.whl.

File metadata

  • Download URL: FLAML-0.2.6-py3-none-any.whl
  • Upload date:
  • Size: 81.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.7.7

File hashes

Hashes for FLAML-0.2.6-py3-none-any.whl
Algorithm Hash digest
SHA256 ed094f36b28f5fe1de73172cb07949777fa071b01f28c0d116efb5abfc030aff
MD5 97621203f8a799f4ddcf2605b3a9ba00
BLAKE2b-256 308b73558908e1d223fae726440af4b1f40689285e88d2f71024d403164e656f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page