Skip to main content

A fast and lightweight autoML system

Project description

PyPI version Build Python Version Downloads Join the chat at https://gitter.im/FLAMLer/community

FLAML - Fast and Lightweight AutoML


FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. It is fast and economical. The simple and lightweight design makes it easy to extend, such as adding customized learners or metrics. FLAML is powered by a new, cost-effective hyperparameter optimization and learner selection method invented by Microsoft Research. FLAML leverages the structure of the search space to choose a search order optimized for both cost and error. For example, the system tends to propose cheap configurations at the beginning stage of the search, but quickly moves to configurations with high model complexity and large sample size when needed in the later stage of the search. For another example, it favors cheap learners in the beginning but penalizes them later if the error improvement is slow. The cost-bounded search and cost-based prioritization make a big difference in the search efficiency under budget constraints.

Installation

FLAML requires Python version >= 3.6. It can be installed from pip:

pip install flaml

To run the notebook example, install flaml with the [notebook] option:

pip install flaml[notebook]

Quickstart

  • With three lines of code, you can start using this economical and fast AutoML engine as a scikit-learn style estimator.
from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")
  • You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a customized learner.
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
  • You can also run generic ray-tune style hyperparameter tuning for a custom function.
from flaml import tune
tune.run(train_with_config, config={…}, low_cost_partial_config={…}, time_budget_s=3600)

Advantages

  • For classification and regression tasks, find quality models with lower computational resources.
  • Users can choose their desired customizability: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), full customization (arbitrary training and evaluation code).
  • Allow human guidance in hyperparameter tuning to respect prior on certain subspaces but also able to explore other subspaces. Read more about the hyperparameter optimization methods in FLAML here. They can be used beyond the AutoML context. And they can be used in distributed HPO frameworks such as ray tune or nni.
  • Support online AutoML: automatic hyperparameter tuning for online learning algorithms. Read more about the online AutoML method in FLAML here.

Examples

A basic classification example.

from flaml import AutoML
from sklearn.datasets import load_iris
# Initialize an AutoML instance
automl = AutoML()
# Specify automl goal and constraint
automl_settings = {
    "time_budget": 10,  # in seconds
    "metric": 'accuracy',
    "task": 'classification',
    "log_file_name": "test/iris.log",
}
X_train, y_train = load_iris(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
                        **automl_settings)
# Predict
print(automl.predict_proba(X_train))
# Export the best model
print(automl.model)

A basic regression example.

from flaml import AutoML
from sklearn.datasets import load_boston
# Initialize an AutoML instance
automl = AutoML()
# Specify automl goal and constraint
automl_settings = {
    "time_budget": 10,  # in seconds
    "metric": 'r2',
    "task": 'regression',
    "log_file_name": "test/boston.log",
}
X_train, y_train = load_boston(return_X_y=True)
# Train with labeled input data
automl.fit(X_train=X_train, y_train=y_train,
                        **automl_settings)
# Predict
print(automl.predict(X_train))
# Export the best model
print(automl.model)

More examples can be found in notebooks.

Documentation

Please find the API documentation here.

Please find demo and tutorials of FLAML here

For more technical details, please check our papers.

@inproceedings{wang2021flaml,
    title={FLAML: A Fast and Lightweight AutoML Library},
    author={Chi Wang and Qingyun Wu and Markus Weimer and Erkang Zhu},
    year={2021},
    booktitle={MLSys},
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

If you are new to GitHub here is a detailed help source on getting involved with development on GitHub.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Developing

Setup:

git clone https://github.com/microsoft/FLAML.git
pip install -e .[test,notebook]

Coverage

Any code you commit should generally not significantly impact coverage. To run all unit tests:

coverage run -m pytest test

If all the tests are passed, please also test run notebook/flaml_automl to make sure your commit does not break the notebook example.

Authors

  • Chi Wang
  • Qingyun Wu

Contributors (alphabetical order): Sebastien Bubeck, Surajit Chaudhuri, Nadiia Chepurko, Ofer Dekel, Alex Deng, Anshuman Dutt, Nicolo Fusi, Jianfeng Gao, Johannes Gehrke, Silu Huang, Dongwoo Kim, Christian Konig, John Langford, Amin Saied, Neil Tenenholtz, Markus Weimer, Haozhe Zhang, Erkang Zhu.

License

MIT License

Project details


Release history Release notifications | RSS feed

This version

0.5.2

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

FLAML-0.5.2.tar.gz (96.3 kB view details)

Uploaded Source

Built Distribution

FLAML-0.5.2-py3-none-any.whl (126.7 kB view details)

Uploaded Python 3

File details

Details for the file FLAML-0.5.2.tar.gz.

File metadata

  • Download URL: FLAML-0.5.2.tar.gz
  • Upload date:
  • Size: 96.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.7.7

File hashes

Hashes for FLAML-0.5.2.tar.gz
Algorithm Hash digest
SHA256 fe5f4b8dc1bbe6194af603c45036002ac948d026c11dd94b597e2ad87bbf4ba3
MD5 51acfcd3490f6329b1e65364c5e2f7d0
BLAKE2b-256 457be71aa1f122d4f9ea014de8946dffc65940f2bb6ddceb88673de38b0ff5b8

See more details on using hashes here.

File details

Details for the file FLAML-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: FLAML-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 126.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.56.1 CPython/3.7.7

File hashes

Hashes for FLAML-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 088540438809826d787c4537875fedd0cce51428388869e1f459fc51081cf921
MD5 80ee95e5de8d674b2daa0e3e57837a62
BLAKE2b-256 f11241bcbbc756da3816d8ee6947ac007f94d4e70fdfdcfdf7b9977eb8424736

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page