Skip to main content

A fast library for automated machine learning and tuning

Project description

PyPI version Conda version Build Python Version Downloads Join the chat at https://gitter.im/FLAMLer/community

A Fast Library for Automated Machine Learning & Tuning


FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner.

  1. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classifcal machine learning models and deep neural networks.
  2. It is easy to customize or extend. Users can choose their desired customizability: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code).
  3. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, cost-effective hyperparameter optimization and learner selection method invented by Microsoft Research.

FLAML has a .NET implementation as well from ML.NET Model Builder in Visual Studio 2022. This ML.NET blog describes the improvement brought by FLAML.

Installation

FLAML requires Python version >= 3.6. It can be installed from pip:

pip install flaml

To run the notebook example, install flaml with the [notebook] option:

pip install flaml[notebook]

Quickstart

  • With three lines of code, you can start using this economical and fast AutoML engine as a scikit-learn style estimator.
from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")
  • You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a customized learner.
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
  • You can also run generic hyperparameter tuning for a custom function.
from flaml import tune
tune.run(evaluation_function, config={}, low_cost_partial_config={}, time_budget_s=3600)

Documentation

You can find a detailed documentation about FLAML here where you can find the API documentation, use cases and examples.

In addition, you can find:

  • Demo and tutorials of FLAML here.

  • Research around FLAML here.

  • FAQ here.

  • Contributing guide here.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

If you are new to GitHub here is a detailed help source on getting involved with development on GitHub.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

FLAML-0.9.2.tar.gz (130.1 kB view details)

Uploaded Source

Built Distribution

FLAML-0.9.2-py3-none-any.whl (139.1 kB view details)

Uploaded Python 3

File details

Details for the file FLAML-0.9.2.tar.gz.

File metadata

  • Download URL: FLAML-0.9.2.tar.gz
  • Upload date:
  • Size: 130.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for FLAML-0.9.2.tar.gz
Algorithm Hash digest
SHA256 2eec68877438c8a233fa7979d692ee88655aac2a4b76cc9f1bc2ab010de1f2da
MD5 569182819fa2a9d020e068bc06916271
BLAKE2b-256 512822da9c552a89f6b4182b01f612a6ed85884b09c74c48cee093cceebbefbf

See more details on using hashes here.

File details

Details for the file FLAML-0.9.2-py3-none-any.whl.

File metadata

  • Download URL: FLAML-0.9.2-py3-none-any.whl
  • Upload date:
  • Size: 139.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.12

File hashes

Hashes for FLAML-0.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bb45d653577f3f0acbc5c920bbd102088c374bed048cd8069d07bc543604833a
MD5 abeac5088d39796ad05c6991c9160fc0
BLAKE2b-256 ee27e9bbc302c76c13435b24a73c096aab6a36f8e4a5755444365fad29b081cc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page