Skip to main content

A fast library for automated machine learning and tuning

Project description

PyPI version Conda version Build Python Version Downloads Join the chat at https://gitter.im/FLAMLer/community

A Fast Library for Automated Machine Learning & Tuning


FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner.

  1. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classifcal machine learning models and deep neural networks.
  2. It is easy to customize or extend. Users can find their desired customizability from a smooth range: minimal customization (computational resource budget), medium customization (e.g., scikit-style learner, search space and metric), or full customization (arbitrary training and evaluation code).
  3. It supports fast automatic tuning, capable of handling complex constraints/guidance/early stopping. FLAML is powered by a new, cost-effective hyperparameter optimization and learner selection method invented by Microsoft Research.

FLAML has a .NET implementation as well from ML.NET Model Builder in Visual Studio 2022. This ML.NET blog describes the improvement brought by FLAML.

Installation

FLAML requires Python version >= 3.6. It can be installed from pip:

pip install flaml

To run the notebook examples, install flaml with the [notebook] option:

pip install flaml[notebook]

Quickstart

from flaml import AutoML
automl = AutoML()
automl.fit(X_train, y_train, task="classification")
  • You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a customized learner.
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
from flaml import tune
tune.run(evaluation_function, config={}, low_cost_partial_config={}, time_budget_s=3600)
  • Zero-shot AutoML allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
from flaml.default import LGBMRegressor
# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
estimator = LGBMRegressor()
# The hyperparameters are automatically set according to the training data.
estimator.fit(X_train, y_train)

Documentation

You can find a detailed documentation about FLAML here where you can find the API documentation, use cases and examples.

In addition, you can find:

  • Demo and tutorials of FLAML here.

  • Research around FLAML here.

  • FAQ here.

  • Contributing guide here.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

If you are new to GitHub here is a detailed help source on getting involved with development on GitHub.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Project details


Release history Release notifications | RSS feed

This version

1.0.5

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

FLAML-1.0.5.tar.gz (177.8 kB view details)

Uploaded Source

Built Distribution

FLAML-1.0.5-py3-none-any.whl (195.4 kB view details)

Uploaded Python 3

File details

Details for the file FLAML-1.0.5.tar.gz.

File metadata

  • Download URL: FLAML-1.0.5.tar.gz
  • Upload date:
  • Size: 177.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for FLAML-1.0.5.tar.gz
Algorithm Hash digest
SHA256 02d8d586040eb64a042a6792fa5a4840c4ae934d58f4c0a7bddfcd69a7ea18eb
MD5 ab4b661bf46e4c6f6b876fe8f4a8b5b7
BLAKE2b-256 228ff5fe3ebab9676a97708e4d2e570c060c1552f440f0febd2e6defafb0d3a6

See more details on using hashes here.

File details

Details for the file FLAML-1.0.5-py3-none-any.whl.

File metadata

  • Download URL: FLAML-1.0.5-py3-none-any.whl
  • Upload date:
  • Size: 195.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for FLAML-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 35cff83ed25d369e535d170e9c054df92a29fc0ee907d3c8e299e94c957ea6c5
MD5 c10f59c7d626e377d80306afff9e55fc
BLAKE2b-256 1fe9f07ecbb423dd32def88caabe064153559e1da1d99674ae39f62bb242c7f3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page