Skip to main content

A fast library for automated machine learning and tuning

Project description

PyPI version Conda version Build PyPI - Python Version Downloads

A Fast Library for Automated Machine Learning & Tuning


:fire: FLAML supports AutoML and Hyperparameter Tuning in Microsoft Fabric Data Science. In addition, we've introduced Python 3.11 support, along with a range of new estimators, and comprehensive integration with MLflow—thanks to contributions from the Microsoft Fabric product team.

:fire: Heads-up: We have migrated AutoGen into a dedicated github repository. Alongside this move, we have also launched a dedicated Discord server and a website for comprehensive documentation.

:fire: The automated multi-agent chat framework in AutoGen is in preview from v2.0.0.

:fire: FLAML is highlighted in OpenAI's cookbook.

:fire: autogen is released with support for ChatGPT and GPT-4, based on Cost-Effective Hyperparameter Optimization for Large Language Model Generation Inference.

What is FLAML

FLAML is a lightweight Python library for efficient automation of machine learning and AI operations. It automates workflow based on large language models, machine learning models, etc. and optimizes their performance.

  • FLAML enables building next-gen GPT-X applications based on multi-agent conversations with minimal effort. It simplifies the orchestration, automation and optimization of a complex GPT-X workflow. It maximizes the performance of GPT-X models and augments their weakness.
  • For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It is easy to customize or extend. Users can find their desired customizability from a smooth range.
  • It supports fast and economical automatic tuning (e.g., inference hyperparameters for foundation models, configurations in MLOps/LMOps workflows, pipelines, mathematical/statistical models, algorithms, computing experiments, software configurations), capable of handling large search space with heterogeneous evaluation cost and complex constraints/guidance/early stopping.

FLAML is powered by a series of research studies from Microsoft Research and collaborators such as Penn State University, Stevens Institute of Technology, University of Washington, and University of Waterloo.

FLAML has a .NET implementation in ML.NET, an open-source, cross-platform machine learning framework for .NET.

Installation

FLAML requires Python version >= 3.8. It can be installed from pip:

pip install flaml

Minimal dependencies are installed without extra options. You can install extra options based on the feature you need. For example, use the following to install the dependencies needed by the autogen package.

pip install "flaml[autogen]"

Find more options in Installation. Each of the notebook examples may require a specific option to be installed.

Quickstart

  • (New) The autogen package enables the next-gen GPT-X applications with a generic multi-agent conversation framework. It offers customizable and conversable agents which integrate LLMs, tools and human. By automating chat among multiple capable agents, one can easily make them collectively perform tasks autonomously or with human feedback, including tasks that require using tools via code. For example,
from flaml import autogen

assistant = autogen.AssistantAgent("assistant")
user_proxy = autogen.UserProxyAgent("user_proxy")
user_proxy.initiate_chat(
    assistant,
    message="Show me the YTD gain of 10 largest technology companies as of today.",
)
# This initiates an automated chat between the two agents to solve the task

Autogen also helps maximize the utility out of the expensive LLMs such as ChatGPT and GPT-4. It offers a drop-in replacement of openai.Completion or openai.ChatCompletion with powerful functionalites like tuning, caching, templating, filtering. For example, you can optimize generations by LLM with your own tuning data, success metrics and budgets.

# perform tuning
config, analysis = autogen.Completion.tune(
    data=tune_data,
    metric="success",
    mode="max",
    eval_func=eval_func,
    inference_budget=0.05,
    optimization_budget=3,
    num_samples=-1,
)
# perform inference for a test instance
response = autogen.Completion.create(context=test_instance, **config)
from flaml import AutoML

automl = AutoML()
automl.fit(X_train, y_train, task="classification")
  • You can restrict the learners and use FLAML as a fast hyperparameter tuning tool for XGBoost, LightGBM, Random Forest etc. or a customized learner.
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
from flaml import tune
tune.run(evaluation_function, config={}, low_cost_partial_config={}, time_budget_s=3600)
  • Zero-shot AutoML allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
from flaml.default import LGBMRegressor

# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
estimator = LGBMRegressor()
# The hyperparameters are automatically set according to the training data.
estimator.fit(X_train, y_train)

Documentation

You can find a detailed documentation about FLAML here.

In addition, you can find:

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

If you are new to GitHub here is a detailed help source on getting involved with development on GitHub.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Contributors Wall

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

flaml-2.3.1.tar.gz (284.7 kB view details)

Uploaded Source

Built Distribution

FLAML-2.3.1-py3-none-any.whl (313.3 kB view details)

Uploaded Python 3

File details

Details for the file flaml-2.3.1.tar.gz.

File metadata

  • Download URL: flaml-2.3.1.tar.gz
  • Upload date:
  • Size: 284.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.19

File hashes

Hashes for flaml-2.3.1.tar.gz
Algorithm Hash digest
SHA256 0349f2b831db27e8f5ae7aa72a221bca552a29db9b9cce8e7ce8f8a0e5f8f207
MD5 a711772e0dd8dde778137006be912331
BLAKE2b-256 6d9df54feca4e4b7280b222beea3cc9597b10184ed6493982406409d1d1186ff

See more details on using hashes here.

File details

Details for the file FLAML-2.3.1-py3-none-any.whl.

File metadata

  • Download URL: FLAML-2.3.1-py3-none-any.whl
  • Upload date:
  • Size: 313.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.19

File hashes

Hashes for FLAML-2.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 c633c73bcb4e0ec56d7ccd1db9577c40ccf8247455a51868da2a2b93795bb26a
MD5 ad0c891a1972d4053193e1d6bd14d356
BLAKE2b-256 911e0f9bc46ad8c93dca2c34ee7814119d9aefb364cff4494995f0e6e44ccc92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page