Skip to main content

Faker is a Python package that generates fake data for you.

Project description

_|_|_|_|          _|
_|        _|_|_|  _|  _|      _|_|    _|  _|_|
_|_|_|  _|    _|  _|_|      _|_|_|_|  _|_|
_|      _|    _|  _|  _|    _|        _|
_|        _|_|_|  _|    _|    _|_|_|  _|

Faker is a Python package that generates fake data for you. Whether you need to bootstrap your database, create good-looking XML documents, fill-in your persistence to stress test it, or anonymize data taken from a production service, Faker is for you.

Faker is heavily inspired by PHP Faker, Perl Faker, and by Ruby Faker.


Latest version released on PyPi Build status of the master branch on Mac/Linux Build status of the master branch on Windows Test coverage Package license


For more details, see the extended docs.

Basic Usage

Install with pip:

pip install Faker

Note: this package was previously called fake-factory.

Use faker.Factory.create() to create and initialize a faker generator, which can generate data by accessing properties named after the type of data you want.

from faker import Factory
fake = Factory.create()

# OR
from faker import Faker
fake = Faker()

fake.name()
# 'Lucy Cechtelar'

fake.address()
# "426 Jordy Lodge
#  Cartwrightshire, SC 88120-6700"

fake.text()
# Sint velit eveniet. Rerum atque repellat voluptatem quia rerum. Numquam excepturi
# beatae sint laudantium consequatur. Magni occaecati itaque sint et sit tempore. Nesciunt
# amet quidem. Iusto deleniti cum autem ad quia aperiam.
# A consectetur quos aliquam. In iste aliquid et aut similique suscipit. Consequatur qui
# quaerat iste minus hic expedita. Consequuntur error magni et laboriosam. Aut aspernatur
# voluptatem sit aliquam. Dolores voluptatum est.
# Aut molestias et maxime. Fugit autem facilis quos vero. Eius quibusdam possimus est.
# Ea quaerat et quisquam. Deleniti sunt quam. Adipisci consequatur id in occaecati.
# Et sint et. Ut ducimus quod nemo ab voluptatum.

Each call to method fake.name() yields a different (random) result. This is because faker forwards faker.Generator.method_name() calls to faker.Generator.format(method_name).

for _ in range(0, 10):
  print fake.name()

# Adaline Reichel
# Dr. Santa Prosacco DVM
# Noemy Vandervort V
# Lexi O'Conner
# Gracie Weber
# Roscoe Johns
# Emmett Lebsack
# Keegan Thiel
# Wellington Koelpin II
# Ms. Karley Kiehn V

Providers

Each of the generator properties (like name, address, and lorem) are called “fake”. A faker generator has many of them, packaged in “providers”.

Check the extended docs for a list of bundled providers and a list of community providers.

Localization

faker.Factory can take a locale as an argument, to return localized data. If no localized provider is found, the factory falls back to the default en_US locale.

from faker import Factory
fake = Factory.create('it_IT')
for _ in range(0, 10):
    print fake.name()

> Elda Palumbo
> Pacifico Giordano
> Sig. Avide Guerra
> Yago Amato
> Eustachio Messina
> Dott. Violante Lombardo
> Sig. Alighieri Monti
> Costanzo Costa
> Nazzareno Barbieri
> Max Coppola

You can check available Faker locales in the source code, under the providers package. The localization of Faker is an ongoing process, for which we need your help. Please don’t hesitate to create a localized provider for your own locale and submit a Pull Request (PR).

Included localized providers:

Command line usage

When installed, you can invoke faker from the command-line:

faker [-h] [--version] [-o output]
      [-l {bg_BG,cs_CZ,...,zh_CN,zh_TW}]
      [-r REPEAT] [-s SEP]
      [-i {module.containing.custom_provider othermodule.containing.custom_provider}]
      [fake] [fake argument [fake argument ...]]

Where:

  • faker: is the script when installed in your environment, in development you could use python -m faker instead

  • -h, --help: shows a help message

  • --version: shows the program’s version number

  • -o FILENAME: redirects the output to the specified filename

  • -l {bg_BG,cs_CZ,...,zh_CN,zh_TW}: allows use of a localized provider

  • -r REPEAT: will generate a specified number of outputs

  • -s SEP: will generate the specified separator after each generated output

  • -i {my.custom_provider other.custom_provider} list of additional custom providers to use. Note that is the import path of the module containing your Provider class, not the custom Provider class itself.

  • fake: is the name of the fake to generate an output for, such as name, address, or text

  • [fake argument ...]: optional arguments to pass to the fake (e.g. the profile fake takes an optional list of comma separated field names as the first argument)

Examples:

$ faker address
968 Bahringer Garden Apt. 722
Kristinaland, NJ 09890

$ faker -l de_DE address
Samira-Niemeier-Allee 56
94812 Biedenkopf

$ faker profile ssn,birthdate
{'ssn': u'628-10-1085', 'birthdate': '2008-03-29'}

$ faker -r=3 -s=";" name
Willam Kertzmann;
Josiah Maggio;
Gayla Schmitt;

How to create a Provider

from faker import Faker
fake = Faker()

# first, import a similar Provider or use the default one
from faker.providers import BaseProvider

# create new provider class
class MyProvider(BaseProvider):
    def foo(self):
        return 'bar'

# then add new provider to faker instance
fake.add_provider(MyProvider)

# now you can use:
fake.foo()
> 'bar'

How to use with factory-boy

import factory
from faker import Faker
from myapp.models import Book

fake = Faker()


class Book(factory.Factory):
    FACTORY_FOR = Book

    title = factory.LazyAttribute(lambda x: fake.sentence(nb_words=4))
    author_name = factory.LazyAttribute(lambda x: fake.name())

Accessing the random instance

The .random property on the generator returns the instance of random.Random used to generate the values:

from faker import Faker
fake = Faker()
fake.random
fake.random.getstate()

Seeding the Generator

When using Faker for unit testing, you will often want to generate the same data set. For convenience, the generator also provide a seed() method, which seeds the random number generator. Calling the same script twice with the same seed produces the same results.

from faker import Faker
fake = Faker()
fake.seed(4321)

print fake.name()
> Margaret Boehm

The code above is equivalent to the following:

from faker import Faker
fake = Faker()
fake.random.seed(4321)

print fake.name()
> Margaret Boehm

Tests

Installing dependencies:

$ pip install -r faker/tests/requirements.txt

Run tests:

$ python setup.py test

or

$ python -m unittest -v faker.tests

Write documentation for providers:

$ python -m faker > docs.txt

Contribute

Please see CONTRIBUTING.

License

Faker is released under the MIT License. See the bundled LICENSE file for details.

Credits

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Faker-0.7.6.tar.gz (498.2 kB view details)

Uploaded Source

Built Distribution

Faker-0.7.6-py2.py3-none-any.whl (562.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file Faker-0.7.6.tar.gz.

File metadata

  • Download URL: Faker-0.7.6.tar.gz
  • Upload date:
  • Size: 498.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for Faker-0.7.6.tar.gz
Algorithm Hash digest
SHA256 89f9f50e7db5054b425e9b8268f69599017d2824b333e1349659c0a41729679f
MD5 f2f0a05bf1ed17be624efd95f699165f
BLAKE2b-256 4d5e1f04a845b17fe6e1a78c25b5c9ca6f4f985325d707b80c63171457ceb1e5

See more details on using hashes here.

Provenance

File details

Details for the file Faker-0.7.6-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for Faker-0.7.6-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 f8522e51462b725108aa5b5e91900bb0b129f186580558e7c17cd811470a06fa
MD5 9bd97e60c70433f62f43dba87164c071
BLAKE2b-256 e068d7cada5aff31223495a2b219480f6cba844e81e9b6bc0959a05476c468c3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page