GDAL: Geospatial Data Abstraction Library
Project description
This Python package and extensions are a number of tools for programming and manipulating the GDAL Geospatial Data Abstraction Library.
The GDAL project maintains SWIG generated Python bindings for GDAL/OGR. Generally speaking the classes and methods mostly match those of the GDAL and OGR C++ classes. There is no Python specific reference documentation, but the https://gdal.org/api/python_bindings.html#tutorials includes Python examples.
Dependencies
libgdal (3.8.4 or greater) and header files (gdal-devel)
numpy (1.0.0 or greater) and header files (numpy-devel) (not explicitly required, but many examples and utilities will not work without it)
Installation
Conda
GDAL can be quite complex to build and install, particularly on Windows and MacOS. Pre built binaries are provided for the conda system:
https://docs.conda.io/en/latest/
By the conda-forge project:
Once you have Anaconda or Miniconda installed, you should be able to install GDAL with:
conda install -c conda-forge gdal
Unix
The GDAL Python bindings requires setuptools.
pip
GDAL can be installed from the Python Package Index:
pip install GDAL
It will be necessary to have libgdal and its development headers installed if pip is expected to do a source build because no wheel is available for your specified platform and Python version.
To install the version of the Python bindings matching your native GDAL library:
pip install GDAL=="$(gdal-config --version).*"
Building as part of the GDAL library source tree
Python bindings are generated by default when building GDAL from source. For more detail, see Python bindings options
The GDAL Python package is built using SWIG. The currently supported version is SWIG >= 4
Usage
Imports
There are five major modules that are included with the GDAL Python bindings.:
>>> from osgeo import gdal >>> from osgeo import ogr >>> from osgeo import osr >>> from osgeo import gdal_array >>> from osgeo import gdalconst
API
API documentation is available at https://gdal.org/api/python/osgeo.html
Numpy
One advanced feature of the GDAL Python bindings not found in the other language bindings is integration with the Python numerical array facilities. The gdal.Dataset.ReadAsArray() method can be used to read raster data as numerical arrays, ready to use with the Python numerical array capabilities.
Tutorials
Gotchas
Although GDAL’s and OGR’s Python bindings provide a fairly “Pythonic” wrapper around the underlying C++ code, there are several ways in which the Python bindings differ from typical Python libraries. These differences can catch Python programmers by surprise and lead to unexpected results. These differences result from the complexity of developing a large, long-lived library while continuing to maintain backward compatibility. They are being addressed over time, but until they are all gone, please review this list of https://gdal.org/api/python_gotchas.html
Examples
An assortment of other samples are available in the Python github samples directory with some description in the https://gdal.org/api/python_bindings.html#examples.
Several GDAL utilities are implemented in Python and can be useful examples.
The majority of GDAL regression tests are written in Python. They are available at https://github.com/OSGeo/gdal/tree/master/autotest
One example of GDAL/numpy integration is found in the val_repl.py script.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file GDAL-3.8.4.tar.gz
.
File metadata
- Download URL: GDAL-3.8.4.tar.gz
- Upload date:
- Size: 802.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.8.1 requests/2.25.1 setuptools/69.0.2 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7c51e0ae7a7ccf43ad9e4bf435176baa9276653dfa16fd167c3632f6e7275207 |
|
MD5 | 193eeed55247e9c4ac8b91ed23f672cf |
|
BLAKE2b-256 | 216f7f76d6ff3673fa18e9edd8d76679968d682f937cded93311f82fa172697f |