Skip to main content

High-dimensional statistical inference tools for Python

Project description

HiDimStat: High-dimensional statistical inference tool for Python

build coverage

Installation

HiDimStat working only with Python 3, ideally Python 3.6+. For installation, run the following from terminal

git clone https://github.com/ja-che/hidimstat.git
cd hidimstat
pip install -e .

Dependencies

joblib
numpy
scipy
scikit-learn

To run examples it is neccessary to install matplotlib, and to run tests it is also needed to install pytest.

Documentation & Examples

All the documentation of HiDimStat is available at https://ja-che.github.io/hidimstat/.

The HiDimStat package aims at addressing the problem of support recovery in the context of high dimensional and structured data. As of now in the examples folder there are three Python scripts that illustrate how to use the main HiDimStat functions. In each script we handle a different kind of dataset: plot_2D_simulation_example.py handles a simulated dataset with a 2D spatial structure, plot_fmri_data_example.py solves the decoding problem on Haxby fMRI dataset, plot_meg_data_example.py tackles the source localization problem on several MEG/EEG datasets.

# For example run the following command in terminal
python plot_2D_simulation_example.py

References

Main references:

Ensemble of Clustered desparsified Lasso (ECDL):

  • Chevalier, J. A., Salmon, J., & Thirion, B. (2018). Statistical inference with ensemble of clustered desparsified lasso. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 638-646). Springer, Cham.

  • Chevalier, J. A., Nguyen, T. B., Thirion, B., & Salmon, J. (2021). Spatially relaxed inference on high-dimensional linear models. arXiv preprint arXiv:2106.02590.

Aggregation of multiple Knockoffs (AKO):

  • Nguyen T.-B., Chevalier J.-A., Thirion B., & Arlot S. (2020). Aggregation of Multiple Knockoffs. In Proceedings of the 37th International Conference on Machine Learning, Vienna, Austria, PMLR 119.

Application to decoding (fMRI data):

  • Chevalier, J. A., Nguyen T.-B., Salmon, J., Varoquaux, G. & Thirion, B. (2021). Decoding with confidence: Statistical control on decoder maps. In NeuroImage, 234, 117921.

Application to source localization (MEG/EEG data):

  • Chevalier, J. A., Gramfort, A., Salmon, J., & Thirion, B. (2020). Statistical control for spatio-temporal MEG/EEG source imaging with desparsified multi-task Lasso. In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

If you use our packages, we would appreciate citations to the relevant aforementioned papers.

Other useful references:

For de-sparsified(or de-biased) Lasso:

  • Javanmard, A., & Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. The Journal of Machine Learning Research, 15(1), 2869-2909.

  • Zhang, C. H., & Zhang, S. S. (2014). Confidence intervals for low dimensional parameters in high dimensional linear models. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 217-242.

  • Van de Geer, S., Bühlmann, P., Ritov, Y. A., & Dezeure, R. (2014). On asymptotically optimal confidence regions and tests for high-dimensional models. The Annals of Statistics, 42(3), 1166-1202.

For Knockoffs Inference:

  • Barber, R. F; Candès, E. J. (2015). Controlling the false discovery rate via knockoffs. Annals of Statistics. 43 , no. 5, 2055--2085. doi:10.1214/15-AOS1337. https://projecteuclid.org/euclid.aos/1438606853

  • Candès, E., Fan, Y., Janson, L., & Lv, J. (2018). Panning for gold: Model-X knockoffs for high dimensional controlled variable selection. Journal of the Royal Statistical Society Series B, 80(3), 551-577.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

hidimstat-0.0.5.tar.gz (52.2 kB view details)

Uploaded Source

Built Distribution

hidimstat-0.0.5-py3-none-any.whl (36.3 kB view details)

Uploaded Python 3

File details

Details for the file hidimstat-0.0.5.tar.gz.

File metadata

  • Download URL: hidimstat-0.0.5.tar.gz
  • Upload date:
  • Size: 52.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for hidimstat-0.0.5.tar.gz
Algorithm Hash digest
SHA256 94c000415e951b64aea36af9f08aaeb45db97dd2ed134350978c4238a01fff70
MD5 09fe5756c95f084001767c708748be0c
BLAKE2b-256 61c853f0ac512d9d09927ea1582e7006a757a2b98441665ac27e8c5b9af0e198

See more details on using hashes here.

File details

Details for the file hidimstat-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: hidimstat-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 36.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.7.6

File hashes

Hashes for hidimstat-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 0b7c699fa966612648b2fc3bdc4e06b70fa36860a9d22202844c3492e60643e5
MD5 ccb1d7bcc874dc2af9a54e588d3d6e48
BLAKE2b-256 3499e065ab9641d4276e5a5494dfbdcb1fa11a7cd2e8b0c6407910df80af6efd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page