Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build Status Documentation Status PyPI version Downloads

KDEpy

About

This Python 3.6+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

KDEpy-1.0.11-cp39-cp39-win_amd64.whl (114.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

KDEpy-1.0.11-cp39-cp39-win32.whl (101.0 kB view details)

Uploaded CPython 3.9 Windows x86

KDEpy-1.0.11-cp39-cp39-manylinux2010_x86_64.whl (412.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

KDEpy-1.0.11-cp39-cp39-manylinux2010_i686.whl (394.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

KDEpy-1.0.11-cp39-cp39-manylinux1_x86_64.whl (412.7 kB view details)

Uploaded CPython 3.9

KDEpy-1.0.11-cp39-cp39-manylinux1_i686.whl (394.1 kB view details)

Uploaded CPython 3.9

KDEpy-1.0.11-cp39-cp39-macosx_10_9_x86_64.whl (115.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

KDEpy-1.0.11-cp38-cp38-win_amd64.whl (114.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

KDEpy-1.0.11-cp38-cp38-win32.whl (100.9 kB view details)

Uploaded CPython 3.8 Windows x86

KDEpy-1.0.11-cp38-cp38-manylinux2010_x86_64.whl (422.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

KDEpy-1.0.11-cp38-cp38-manylinux2010_i686.whl (404.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

KDEpy-1.0.11-cp38-cp38-manylinux1_x86_64.whl (422.5 kB view details)

Uploaded CPython 3.8

KDEpy-1.0.11-cp38-cp38-manylinux1_i686.whl (404.0 kB view details)

Uploaded CPython 3.8

KDEpy-1.0.11-cp38-cp38-macosx_10_9_x86_64.whl (113.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

KDEpy-1.0.11-cp37-cp37m-win_amd64.whl (113.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

KDEpy-1.0.11-cp37-cp37m-win32.whl (99.9 kB view details)

Uploaded CPython 3.7m Windows x86

KDEpy-1.0.11-cp37-cp37m-manylinux2010_x86_64.whl (387.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

KDEpy-1.0.11-cp37-cp37m-manylinux2010_i686.whl (368.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

KDEpy-1.0.11-cp37-cp37m-manylinux1_x86_64.whl (387.6 kB view details)

Uploaded CPython 3.7m

KDEpy-1.0.11-cp37-cp37m-manylinux1_i686.whl (368.8 kB view details)

Uploaded CPython 3.7m

KDEpy-1.0.11-cp37-cp37m-macosx_10_9_x86_64.whl (113.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

KDEpy-1.0.11-cp36-cp36m-win_amd64.whl (113.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

KDEpy-1.0.11-cp36-cp36m-win32.whl (99.9 kB view details)

Uploaded CPython 3.6m Windows x86

KDEpy-1.0.11-cp36-cp36m-manylinux2010_x86_64.whl (388.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

KDEpy-1.0.11-cp36-cp36m-manylinux2010_i686.whl (368.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

KDEpy-1.0.11-cp36-cp36m-manylinux1_x86_64.whl (388.3 kB view details)

Uploaded CPython 3.6m

KDEpy-1.0.11-cp36-cp36m-manylinux1_i686.whl (368.1 kB view details)

Uploaded CPython 3.6m

KDEpy-1.0.11-cp36-cp36m-macosx_10_9_x86_64.whl (113.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file KDEpy-1.0.11-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 114.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d0f8da0b4016cc7bc22206ff5fb82b15ebd088de32f54b9c572097a2c6308e8f
MD5 249df682674d428ece02dd32a8d01830
BLAKE2b-256 a67f780eed6ec19f9f864fee688f732bb619dbef72788fa3ec0da09b5ba3a5ec

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp39-cp39-win32.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp39-cp39-win32.whl
  • Upload date:
  • Size: 101.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 fa378642e6c0c3f134782743c679385cae08cabc39ee3d4615d740056964bda1
MD5 06a77b66a916f98fefb12c42c3a0c343
BLAKE2b-256 00e0b1a91640e6bc1ad31ec3511a2fa15725fc79131ebb90c5648be0f93d7fbf

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 412.7 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ecb71b45c980d0c9cc19401655da9248e9b3a0dc26f0295b75acffc1cc29be22
MD5 f40ad941534461c5c4e194d090675ed6
BLAKE2b-256 5a0abcd8450d05852a73f5d0fa1de9200cf75e61584e1081968c91e12bafc55f

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 394.1 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f781a0616997804702a732f1765712a19c85b8b42868fb9e4f4011c6f21ec788
MD5 d16fd3da15e077834a49804989c22e98
BLAKE2b-256 e5936c15bb45a19ed4168d2c146bce467cb50d462bc8adcd70cfdc0a479ba7ce

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 412.7 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3d81e9fbae4b18c69ff9d59ff2c914b5442c9031701b8f62958adb5f4e14d388
MD5 39d2af3c180ea778bfd63e5152b1dcfb
BLAKE2b-256 36792fbe54cd6818f59c737e17bfeb70228952013b40f3b47cadc46922dfed8b

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 394.1 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 aea8b5560183cd15fcb82ee76cc97c1141470e3f20aceeadd996a844e01df20b
MD5 f01f737d9407b8ca611da4c0f69664e1
BLAKE2b-256 e854543f96b98ca844add67d64d47be518c3e48bb88e985ad7a7a0b1bc759bdd

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 115.0 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 304b56fb80ee8401efea327219940f0a66ab34a6e2f4c4764d54575ab0646846
MD5 5f67427a6b31e991a3608c42e5d3bee0
BLAKE2b-256 0fb08f11755809d9f50f77d5944e88a6475fe4238080ad4cfa6a4165d4263416

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 114.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 95504cbffa8f27b7a5cb86fd7b55536c49c5461898e1475d4a58cf184e507fdb
MD5 ff4831aee24f2b2efbc73920e34952fc
BLAKE2b-256 0e105e0fdca5a6f3b895eba20d495a193988cb7062a9e2349adc48461926ab0f

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp38-cp38-win32.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp38-cp38-win32.whl
  • Upload date:
  • Size: 100.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 600d87dcf1bb5d9875cf48471f3f2b49c65f4fb720ea2f3ea2ad81d8a03d4be8
MD5 476b17474bda380164d1a25bf59e13ce
BLAKE2b-256 e9174a949d9e4ce84d4f5e214af970f9b63e971d2f89e36ff2735c14de054c7d

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 422.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8006d05eebfb36d601825b7e7de3342282d5d7e1eb42fcbaf3bf7e3b7dc9fa00
MD5 5ccbc048350d4369fe28b5f88c216057
BLAKE2b-256 4698164b1eaa5fe8573d8f9fdf4269e599ad5ca85d345c4b05a6189b7d89c524

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 404.0 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 25aa24ce43433903d08b5b9f00d45e84b6151a9d335f1a10bc8b347fcfe74a33
MD5 00021d983c789a77de68d2b6905f6adf
BLAKE2b-256 237852002149c6d4b5359518044385478242579ec73561810d31e765d45260fa

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 422.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 db875f5bd537c51818a0e4c96a6e85b61b4cc77e6c66121f7769ab6e83c750d5
MD5 16a83f1b1722999590173cacca423596
BLAKE2b-256 425ede657b6f8044699c1a3e904b56b36d96b1bfd3593d30a4c8c5342005dc3b

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 404.0 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 37bede89ca155dca1e11506669633ab764f173c5224ff5b94a0cb335e2ea92c0
MD5 f000ba137ef1e77bdb85581aa4cc5ac2
BLAKE2b-256 96c78fb0e37a782a4b6c6513bca3c80f1104aacff38eb5a781718902adac2de3

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 113.3 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1eb268c9c51cffa7c4847e7133a45550f31a91dba05a78c3ea682a52adfa64e8
MD5 bcd90f347f37d6087af57c084729bafe
BLAKE2b-256 edc5d3f9c1e148e1be7e7ab1407eac2391918cf7dd3f2c8bc3c251f649bebb9b

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 113.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 37daa472f33ffd647c5f173ffeea2088b2a2eac7459e00dd4e6da84e1683966f
MD5 f5592a83f6d42d0192bb9403d80bfab6
BLAKE2b-256 5271ac5c25e0f44e4648e76f26deda5b9ffed2f1025213db57ab763cc5ce5d47

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp37-cp37m-win32.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 99.9 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 815484d41ce86f2c2a5fa8f9e6c95b6bec9f5ae1032722aca199eb3bf7c61ffb
MD5 b82f786ae68fa7fa092685fbd0cf9100
BLAKE2b-256 03e5b1a1ac45cc27b308be805f4738cb84f502cbefbef732f9251f2e61fccc20

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 387.6 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 5f9ead553a35ab9744b93736be23dff289351507283ae969a8d625f3caa02777
MD5 a25d4f383024bb841de58f002f2d91f1
BLAKE2b-256 07baddc29a419532c873cd896e99c41464b9ad22778579bd34625448ed0437d3

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 368.8 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4381797131472bd4db79be95cfa5867392959f6947a91ca09c223dff486b7a23
MD5 f1f054031545272cf044a731ad634925
BLAKE2b-256 a5bc0a731538366b6288f79a789aec2efcd9b74b0e176608334bb764a4f36e23

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 387.6 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ffd066c3f368658417dea084a266fdb3741479dfb1caacd444867eb4846106c9
MD5 180959a38935c6904703bd1d5a7fa61e
BLAKE2b-256 7d2bbcbce6ec6c4a800f9b53c65736d8387c7f0d5299ec61f9dba353f73b6172

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 368.8 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7a247ffef300d5edc497ee5118b5df37e6ddadc9af91293c23eb5b5e301697d0
MD5 79da0b591313513dfa42b3c1f2d2d156
BLAKE2b-256 cb49789b0d3b3b39db83a6eb11f06e256c2fc2cae33cdadc45e5efbdd86b47e8

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 113.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 745c2e224b3316b27e7d01848fbc0d0f9cd9a6520a6d00a58ce9250804b19a71
MD5 80452b7f48e6b43ea080b000aee6f341
BLAKE2b-256 24ba591eba74e6f66d382f74a8072ffce280143b171d56c263c8e816acfb1f79

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 113.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2bbb3d85868c40fbdc91801935d8258e94abd44c0594cc5a0794a4cd333aac77
MD5 23215c21e036e57acd340ad31ee6b6e7
BLAKE2b-256 a9e73c43132089b6acbb89e926711b6680b2816686e9b218b2c855a5760a509e

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp36-cp36m-win32.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 99.9 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 535189cc9643249b946760df7756a4768c68f5293ddc0653a3120b40c00c8a47
MD5 aa434433537f3a875066a0c7dd8f9f36
BLAKE2b-256 5e7515f8ffe8f54d7542a6337eaa2a105b2c9248bd582e6653821f7199ad0e75

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 388.3 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 420ae412ebcb6848844779a42294dde4e564ae0b5fd0aa0b406eb351a9956b2d
MD5 da4c19173c19112245532ebbda2bd53d
BLAKE2b-256 0911ef985b620659dad5920a866cf262b3d0412f11e9d6d2f0a511091bb9568e

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 368.1 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c4221fb4724f373204fec87a2a3aa2807caf0086e0d2b099994d535cf091f820
MD5 61022f9f275e0b42b91d2b85eb806ac6
BLAKE2b-256 07a131a44b4bcf6c3e3774622e55020fed9073da9ca9f9df35019f0d98b32682

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 388.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a37e69da823baed0a52120ac39fc80faf474078894b7d3c6d8089ff1b5f89f53
MD5 5487d6e05408c25f854db144b61274b1
BLAKE2b-256 a989f5e06b3cf8a6bd9287022bb6b3ce065c912838ccf422ce95852fefab9811

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 368.1 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3c3345676fe0eab4616c435d717e9e76f81591da7a0e678248e96bd413ee6732
MD5 ca1b14d1b014e4ba6ac95c1a222a554f
BLAKE2b-256 913a7d79380be4bae5842a10420c01692a690315a360c7c327615625644f7c23

See more details on using hashes here.

File details

Details for the file KDEpy-1.0.11-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: KDEpy-1.0.11-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 113.7 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for KDEpy-1.0.11-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa596ad98525a7f9b3bb96ca0482fe5641de4c4398a2dececfba1ffd35dc1042
MD5 30e4413d9ce8f68f09585e9897b04b17
BLAKE2b-256 3d27714ca3f9899b4f955bf0f80f9fa066ddfe34e13b549886328d4ff0bff3db

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page