Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build Status Documentation Status PyPI version Downloads

Want to cite KDEpy in your work? See the bottom right part of this website for citation information.

KDEpy

About

This Python 3.7+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

KDEpy-1.1.1-cp311-cp311-win_amd64.whl (93.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

KDEpy-1.1.1-cp311-cp311-win32.whl (84.0 kB view details)

Uploaded CPython 3.11 Windows x86

KDEpy-1.1.1-cp311-cp311-musllinux_1_1_x86_64.whl (451.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

KDEpy-1.1.1-cp311-cp311-musllinux_1_1_i686.whl (426.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

KDEpy-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (450.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (431.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl (102.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

KDEpy-1.1.1-cp310-cp310-win_amd64.whl (94.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

KDEpy-1.1.1-cp310-cp310-win32.whl (84.6 kB view details)

Uploaded CPython 3.10 Windows x86

KDEpy-1.1.1-cp310-cp310-musllinux_1_1_x86_64.whl (440.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

KDEpy-1.1.1-cp310-cp310-musllinux_1_1_i686.whl (418.8 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

KDEpy-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (432.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (417.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl (104.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

KDEpy-1.1.1-cp39-cp39-win_amd64.whl (95.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

KDEpy-1.1.1-cp39-cp39-win32.whl (85.4 kB view details)

Uploaded CPython 3.9 Windows x86

KDEpy-1.1.1-cp39-cp39-musllinux_1_1_x86_64.whl (443.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

KDEpy-1.1.1-cp39-cp39-musllinux_1_1_i686.whl (421.8 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

KDEpy-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (436.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (420.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl (104.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

KDEpy-1.1.1-cp38-cp38-win_amd64.whl (95.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

KDEpy-1.1.1-cp38-cp38-win32.whl (85.3 kB view details)

Uploaded CPython 3.8 Windows x86

KDEpy-1.1.1-cp38-cp38-musllinux_1_1_x86_64.whl (452.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

KDEpy-1.1.1-cp38-cp38-musllinux_1_1_i686.whl (430.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

KDEpy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (439.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (423.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl (102.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

KDEpy-1.1.1-cp37-cp37m-win_amd64.whl (95.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

KDEpy-1.1.1-cp37-cp37m-win32.whl (84.2 kB view details)

Uploaded CPython 3.7m Windows x86

KDEpy-1.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl (418.1 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

KDEpy-1.1.1-cp37-cp37m-musllinux_1_1_i686.whl (396.3 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

KDEpy-1.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (412.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

KDEpy-1.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (396.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (103.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file KDEpy-1.1.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 93.6 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5e0e23da5f7f767b8b9bfde278ccd3de0bf2511a41ab52e4031d18c28acdc1fa
MD5 b1f4c69a4c1e535915ee83765a37a465
BLAKE2b-256 daabf3a02b5d53fdd718d5916f2642ddf488b4b8b8ee865115b1fd4015177ee8

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 84.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d2d30a4f7080dd670313fbe60bf58aacd6fcc7144ca033a45711c60fdea4506d
MD5 33db5837aaf3abc42cac432ae4ce2516
BLAKE2b-256 bceaa38282ff8152fddb2ad1167596c0c3f4bcf2ba04ad4b4044e9cd175ace87

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ca9aa62e66d857b3a81d796772983edb4ecb9edaa37d815706e3597ab6eb8812
MD5 6a7b4309311ca6f5acd70b1d5c9b7689
BLAKE2b-256 d866288046fc89bbb51e8e2572c9fb94314692fd831a5f466fde4896204d2893

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 755c5333f1aea887b4c8841461340c5a85be4ed0311ea2031560d1fd595fc47d
MD5 27e7f8508260ca4a11632bd127b7490f
BLAKE2b-256 5bd733ad9caaabf1b51b823715cb722ba4fa997170b1df119d7387b3533892a1

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f459b5015c080016841214b1979cc60916cd90ff8d78d5882b588a99ff294b22
MD5 c1c997aaca6021952401ad91bbc0c1f2
BLAKE2b-256 f25fd3ed856e44225fa472d3a13b39d3f69affab7af9fb3f674d5707c52e6ea9

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 96536d903849bb33d1e8e32c241013d7de536c955068a1476b4b9c9d24e96efa
MD5 708f8ed4b0144692287a22f2d2e37897
BLAKE2b-256 8d326413cc3c6fd67c2f6b5509804faca1b0708163c1f92798437506bdc82865

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 db59fd7fa2e2c94ffc177a488b15ecaec0260e1329f3bf6e536996921350ebde
MD5 b2e52778f1c6a6924f708d0e7f36a7b6
BLAKE2b-256 765a1d8b3cf65ae1ee8bfe2b357c4abeeecac22fbc714cb76fd3b0bcbd87b901

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 94.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 80e28b35cb94dfd6be2701f7667b8804362145d7771211eda0ed1312c074d36e
MD5 0b22fb9b59186b3d765bd784866674be
BLAKE2b-256 680bc5ebeb1f2c5f2ffdb7959ea76d5ba1121aa121eb83c3e149fecfad6f72d0

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 84.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 4d8ac215e2a361de605d006b36414621950ee11a8293598caa39789b5a0b6535
MD5 280d38859aff12629a5f28e8401071be
BLAKE2b-256 3a1dbf2377772bc839de35cadef0218e20257e852bada2c9743d1ab9dff0d1df

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7043d05679002a66c8b41b047c405c7ae03ab3128302100d8baa47ce1fbb5bea
MD5 9b264f0b986f3866a1b8b63747b39e52
BLAKE2b-256 e54f565dfcf41899989644cefb898b5d7046423e5542cb9a18e510a9b3266203

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 8a318e1d1adc8b9ddbea51b141d932ada0a4add329c43b83cab194230d2031df
MD5 39a05609ef201690d7bc9ad083505fb5
BLAKE2b-256 c4202a843184f794593f95372a3b85e0d49bab19ef98563370d815fa175cf986

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28d546790c3fd55e6b9db78679cead2a2cc2233b98eaeb52e72d8972947623f8
MD5 c7f6678334464652e349358571f8ab85
BLAKE2b-256 1fc9d83c93a73fe3e9623e59af27945ea640b9a792476e2f3cba873c683f5912

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 94a573d7942cf5b224d852fa1ebe4454a679541c56891a6f74ace5b3de401626
MD5 23e21cb13503c072ff6e32273a60abf1
BLAKE2b-256 de67ea9d345010db91cc982461d76d94dd83e92396ab0ab44735bf58fb3d6f56

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f9108f54e116f1c60c4d52915252b3710b501f632ed5e3fdd1f8f29a484d20be
MD5 0190c8e7dd279e566909947269afa2bd
BLAKE2b-256 aaf1f6a7aebffd3813c7d9f60494eb81af5ba4d26c22fc7da8f83ca0766c142a

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 95.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fc0a1c18bfa8961af76a0e94135fe7993b5931ca357321a56c6a4cba998da485
MD5 fa094f6c5e090f94dc17a4b4efbcd043
BLAKE2b-256 9d36da3f58191bf5e12bd99fc27d7bf1688528ac9529b94f851c647ef1974052

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 85.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 12446cfff61a2ca33a9289712265d66ea018afa93e2f0f74e0289c585904fce6
MD5 5840432aa9e92786e958c1746a36d1ed
BLAKE2b-256 95f942b4f4de150c50ced7c4fe2f990f739139bb987561db29812555e754699d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d13b352533c7f050b5ab28615dd6054da56d442ab5e71ae5aba2b9f07c1ad78d
MD5 90f6aaa98a364f54f86ae0aea3614f9b
BLAKE2b-256 82e093d9f634f247e8a03955ba152079dd3f68cbcdda971c56018f7001b84ed7

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4c36f68743e61674bef64e5d6d72a885e46356bcc7ac6368d70c35f0a960a66c
MD5 c4554cddfaa863ef882b0eb059d079a6
BLAKE2b-256 c63117980c7c868f516317bd0ff62e407a74bce780507232f52b4be3eb9a0d13

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b1953bf5d5e996b3c528d5998c7a2e0060a10d1d9c5b54952c71d68ddab688b
MD5 e675cbb3a1a6882da811fefde640bdbf
BLAKE2b-256 c3e94f548eebdd6103db2d188278197e8f4037c3d355fafc7fb97699be8d0dbd

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 35e52a9f1becaa13048f94f2fbeda14f1b6482ec5ae86ee7dee8b041846f33e8
MD5 4d1d2efc82e0b9b30c26b3f05929cb49
BLAKE2b-256 17dcd9487653734fdcc71c1eaef5adfdb92b5bc48b8b5eff66ea0aefa5549f29

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a5c448bbcdc7fab522b2cc66cb831432e25bc114233d8b50c40c6d2260de866
MD5 6fb53b510fd518082f2ef098ef8fd42f
BLAKE2b-256 90c32e0e112660adf84b6d52435e20ccabce61638d0e4b7af0916b4f014e6622

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 95.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6b27ee7c98ac0c0f62dd8cfceaf81262584b47a99c52fbcb314bafb0dcd02818
MD5 04f8430447a86aeb2810d1b37b275f4f
BLAKE2b-256 d79750f6b5ad3ecaf5e1576b16097a145bf324931456798353252b3185479380

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 85.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 4db834027b5aca39431ba480a3b0dfec9d28f593ceded4d0cac1369d8059c721
MD5 d2bc96b20101df87f042cd63b3ca95c2
BLAKE2b-256 9f6157df4ce7d2032c4c3b6dbf2960528da607a5401ab15e0dc5617ff2dc4c94

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 98ec90b8bb7a411e7b0d69565e0e2ef88140d40fbe19e514944bdeb8b3318f1e
MD5 fcba6b5cba660240dc9b7d5c57defd7e
BLAKE2b-256 65260b09de701b742319f6b322fd3fe884060c4e3eec415000ee2f4a20d759f4

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5701a6ddf1c43d682e6e590e5578f2de3f578ab787c8d0fbbae12e28df666067
MD5 15e0efaf471245110032e1ad1798a2ab
BLAKE2b-256 b3e68d7263cd500fad7b43fdfe5593dfa4a5532dea9a0eae75cbafb165ac75f4

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1523822491a70d24aae9f4b4408bd777e09d6a6559ee832bc170ff2142866879
MD5 54ac012f29ae599cc3c01f589b5a360d
BLAKE2b-256 5dd1b45d79d686497c922ecffa1e2b019b3f1679a31a9e68332bf95cea41be69

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7aeccae0cd51a825cfe0037e974dc9f12b8a557b00f73c816247d09142628214
MD5 e1a97429efb9f248fe0c936a763cb042
BLAKE2b-256 962be01420ae9e0571df75c0a4d37dec5939dd0654aea51181295b2ca5884481

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e2a3de05a66b1fb14e6568beb8c19cb8e56da38a2e691efb1e47a2da75becb23
MD5 c5147fdeb9f896df73ab1046e74baff0
BLAKE2b-256 b45eb27bde7203b1b0cc9f219dd376e164d83dff997a75e1f6e49d53cd136e79

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 95.3 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f52aa417bb17ca5e129ed4a01629b62e014106647eac8c86736865b38d2a594b
MD5 a8485c68fdda5e0dd12138ece2592822
BLAKE2b-256 4f37963302b42bc367bcae6ea90233ff5c13fd6dbf14f3f90b7391281a443f72

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 84.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for KDEpy-1.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e296c4da0b4b9dc14e131f495b7882ee80a6137939f0b477c7e58cb58b48ea5b
MD5 5adb6297af7c418d4619ee36784f7177
BLAKE2b-256 ae0678d033070cd342dde8db3cda3e048b7551975eddad59f98ed109d7768e1c

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 301ad5956c3613780af4a402577f027b07537f1b9620f339bb4d8982f96627e9
MD5 56db2d7aef946882a336bd7ee11f6da1
BLAKE2b-256 fbcf4b4b25f43547f7af56ca932379473589ec0b75d952f07c75cbae42e34c5d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 27fc9045b41190fff69bfb8f4aaba427410e4a680383b6030ff6b8262067b46c
MD5 0fa6ecbe7e187fe70c18c62607190b83
BLAKE2b-256 ece0a0b707d26e4639ced262f4c1ad5b821cd35830386a12c1b59fbe4e14b40f

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 37851bd4a6861d739716a7927f7706a80f23edd27756ae2b1ee703b68561167b
MD5 c0be15cac4c445a74715db30076440e2
BLAKE2b-256 0468a4bed69c7efc067030cbcfa1e0f0d1b202a63d8a2660ffccbf3daca49627

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 55554c9c0f281f075b0f829522b0cff6a0289c39df45ae2b8a5d00d1184f998d
MD5 e4e4dd897f4d8dd8007ce218674aab0b
BLAKE2b-256 21579740ac0daa1eee16d0e3234ce05465baaa08804afe7a3c396b10bfc75c06

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c770b15449e8bd2ff2834f6ea85b866903045d476c81472b8e88c9c82d2ab5b7
MD5 b1f79211bd13b856e60c1d2629582d4b
BLAKE2b-256 e33e88046440ec97e841a721adb4adbe63163f6d920e65a7cc1138b314de6caa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page