Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build & test (master) Documentation Status PyPI version Downloads

Want to cite KDEpy in your work? See the bottom right part of this website for citation information.

KDEpy

About

This Python 3.8+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread use by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

kdepy-1.1.10.tar.gz (26.3 kB view details)

Uploaded Source

Built Distributions

KDEpy-1.1.10-cp313-cp313-win_amd64.whl (258.7 kB view details)

Uploaded CPython 3.13 Windows x86-64

KDEpy-1.1.10-cp313-cp313-win32.whl (246.3 kB view details)

Uploaded CPython 3.13 Windows x86

KDEpy-1.1.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (675.8 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.10-cp313-cp313-macosx_11_0_arm64.whl (261.5 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

KDEpy-1.1.10-cp313-cp313-macosx_10_13_x86_64.whl (266.5 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

KDEpy-1.1.10-cp312-cp312-win_amd64.whl (214.4 kB view details)

Uploaded CPython 3.12 Windows x86-64

KDEpy-1.1.10-cp312-cp312-win32.whl (204.7 kB view details)

Uploaded CPython 3.12 Windows x86

KDEpy-1.1.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (557.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.10-cp312-cp312-macosx_11_0_arm64.whl (216.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

KDEpy-1.1.10-cp312-cp312-macosx_10_13_x86_64.whl (267.5 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

KDEpy-1.1.10-cp312-cp312-macosx_10_9_x86_64.whl (223.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

KDEpy-1.1.10-cp311-cp311-win_amd64.whl (214.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

KDEpy-1.1.10-cp311-cp311-win32.whl (204.2 kB view details)

Uploaded CPython 3.11 Windows x86

KDEpy-1.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (571.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.10-cp311-cp311-macosx_11_0_arm64.whl (215.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

KDEpy-1.1.10-cp311-cp311-macosx_10_9_x86_64.whl (222.8 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

KDEpy-1.1.10-cp310-cp310-win_amd64.whl (214.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

KDEpy-1.1.10-cp310-cp310-win32.whl (204.8 kB view details)

Uploaded CPython 3.10 Windows x86

KDEpy-1.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (553.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.10-cp310-cp310-macosx_11_0_arm64.whl (216.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

KDEpy-1.1.10-cp310-cp310-macosx_10_9_x86_64.whl (223.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

KDEpy-1.1.10-cp39-cp39-win_amd64.whl (215.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

KDEpy-1.1.10-cp39-cp39-win32.whl (205.6 kB view details)

Uploaded CPython 3.9 Windows x86

KDEpy-1.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (557.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.10-cp39-cp39-macosx_11_0_arm64.whl (216.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

KDEpy-1.1.10-cp39-cp39-macosx_10_9_x86_64.whl (223.7 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

KDEpy-1.1.10-cp38-cp38-win_amd64.whl (216.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

KDEpy-1.1.10-cp38-cp38-win32.whl (90.6 kB view details)

Uploaded CPython 3.8 Windows x86

KDEpy-1.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (445.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.10-cp38-cp38-macosx_11_0_arm64.whl (215.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

KDEpy-1.1.10-cp38-cp38-macosx_10_9_x86_64.whl (107.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file kdepy-1.1.10.tar.gz.

File metadata

  • Download URL: kdepy-1.1.10.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for kdepy-1.1.10.tar.gz
Algorithm Hash digest
SHA256 8da57c9b4112e747c7807ceded2b0c239ce444497a96ce36604977596c99c5be
MD5 3d703831ef3e17a4306fc116d25b854b
BLAKE2b-256 b053b93463bfe9712a27d7fbaa8a8dcfc0c6164c6ff6c9ed537c7a63d575934c

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 258.7 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.10-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 64fd9b75ad2cb3fa1f037d408a40209a35249e3385e7332ca87551b2193f4678
MD5 6d47db296252cc8433b19b26be303364
BLAKE2b-256 afada5c5952063c5ab197024298e8d93627c2781ef7de959284f0e94bd9139cd

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp313-cp313-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp313-cp313-win32.whl
  • Upload date:
  • Size: 246.3 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.10

File hashes

Hashes for KDEpy-1.1.10-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 536aa7665bc084687312a14424d8128468d0785bc11ea11a119ada356d5cc651
MD5 229e078b921c4066eb27ef8698ec985f
BLAKE2b-256 f36d41c35e15a34c81e1f6af61ae9a072df78b1a3cbfc8b18ce4fb4f27bf54bd

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1845e4551cd5b5c2329cf9f748c7181e4b264dda029e2086aee142cba281d994
MD5 161c22a888be62f25da7b13966f8517b
BLAKE2b-256 58878dedb807dd460e2cf98e3b92c034691df5d40fb57608a3bbe1fbd5122db0

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aa168ad905bfcec75c33c4e3005cd3c3ddd2516e26e86c3ac12cd8bb4c932a91
MD5 f276d2321c5ab6bdbec42cdd289099c2
BLAKE2b-256 92e636bcdc10681811c7a6d0849470e617acf40a782db847dc2395ea71c4984a

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 3432d64ab433af6d3703c1ae35416ea3c56ea31aa842b1b6fd97d48cb2715273
MD5 a44b65ade8d83fcd8254774ed02a8f69
BLAKE2b-256 4834498e80673a0857ff9471c214189551c94fd524a2e7ec0cb9b00e30d18000

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 214.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2e60fa479bed3830acb44066f588bd32056daf207e2072ef31c5d20f73e492e5
MD5 125dff80649e994f322c6ce01e50ce69
BLAKE2b-256 6aa3f151272f232a6ea2c4e32dec53f76bc3182437d9511278a97d69a71c0cb1

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp312-cp312-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp312-cp312-win32.whl
  • Upload date:
  • Size: 204.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 d94a330144f83d32f867bfb4b87e57fc82512f9bc34e5e4fdadea54f0abc395a
MD5 b5a781670649b82b4f48b30dcd00d771
BLAKE2b-256 7a0a16dd335dc600c49919f5487a44b99282de70a5418d476a7d27b84d2d1a8b

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 82504684a5c49200844ccecd65ca151f24280c67f82344d702c9054d63433e4c
MD5 5cb730f5e7e7e560b88ef594c5cb4cc6
BLAKE2b-256 7fc616e00d804742149baed82acef889fdc2622e46570bb9e5f7a1a942196d43

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f40aa3cea20ebd69c1f9b7ed3e1a037fdc019854ba8bfc3f7c714a5d60e9bfa7
MD5 5116f5b9a635c3e6dbf16280a8bbf9b8
BLAKE2b-256 1df609f57dfbb52a0699949a7184fd7b6ae71528bc4f298d7b1e9f3bf6abcfd7

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 22c0e374b3321b7039e69b83ddea1978c858a5771725840d2eb55706d1358bc1
MD5 21eb96809ae408dce1dce7fc8222f491
BLAKE2b-256 e0c2922fa545ff6728ee30e03100859506a6201add69edfc06b580d2ffdbea84

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7b45b3029fced4bee1cfb55e346bf70a9105b31ad2a1433cd3bf743c4532a6ae
MD5 9214fb2887708ee047a34a56fa8cfcb1
BLAKE2b-256 4c4fde073c593c0b2c600591efbad487fd4b279a04b5e3a9efc419c2dd1abc10

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 214.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c02bbb35dbfb259a2fb46f57660109919defcbbe0400a186f54176589ea0fdef
MD5 cadbe4670a7acd3d9f83743f60c20026
BLAKE2b-256 64de3f18992d0badf5a1f4d710c973444f574c30b6db0b8e002704077d951239

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp311-cp311-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp311-cp311-win32.whl
  • Upload date:
  • Size: 204.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f37d9fa1b0a91bfafdb803d0dccd976b3f5ece40e0299e6cb773a285388a89e1
MD5 31a111306416e231566cd6b34670a58f
BLAKE2b-256 2a76be66003e15f29b24b21ddba6893c8ea9996ff05b7af28e76cf0dec877124

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e43550dc698d4151e173580efe8c229f2d0feb866f77cb72c7729769ddef754f
MD5 cfe766c6e8b36007a59f5dd5a8c98fbd
BLAKE2b-256 3e55053952e799bf441a9bb8b32ec0e8a17454af4e79eda5772f42db7f5e7834

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 173660276ae0381ac0f1186fb2834bb6e5470f4d38eed033652479d96671ccec
MD5 63bf7b5c550d6116d6d41e9b966ff5de
BLAKE2b-256 6497ce92bad4b4139bc5a4d39cc4060dc4f0777631908b421b5b83bf45c3707f

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab6c982631d4437056dc556838542f06e0bddd6fcbce337afb13e7e6c05b005e
MD5 9ac8f9125f3c7c144fc2b9cce5687212
BLAKE2b-256 2fff4340f557c2162871d3b1003305203b98e4bd6cf43604306d991a0aa98d23

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 214.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 61e64a95772cd395d35f2ce5139a906b25c2b5cbc4158be06e3e43fa1a58f9b5
MD5 ea5077a80e3e24757b41a6da45764967
BLAKE2b-256 62521e37b1593cf91c9b5a0a65b967752d2ec3490bdda756eb5162aaf16176f8

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp310-cp310-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp310-cp310-win32.whl
  • Upload date:
  • Size: 204.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a760fcc447104fe7f05de3c121b35dee2fb3bb03f4b609540f36e8e809cfc3e2
MD5 987676eea57422f5a42c557e407d100c
BLAKE2b-256 c7ebdcdf8b7a20eedd7210b7df461fccf2faf9754992410b2a7b798ff5ea93dc

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aec6d4bdb5a1fa69a7e4e31f8788f8fccc84849103986f9081fda4618dc1b5a1
MD5 f2e78bb04d2251b15d35c6a7ef27984d
BLAKE2b-256 2093eda6315ea83b2855225783fd19f999d9c463847987a5ea5a687b6585e15c

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c90eaffc4a519233e7ae771567063ac971309bc5443a830c517fd986ee83350
MD5 44a8aa1b61899b8e93f12ccb158ad834
BLAKE2b-256 e4fcf98bfe3a50b3db7330d89ac3dcd85a135f18e96606a985e8cb5e194fb7c4

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70b5a56c52b8830e7dca4ac6af7c428aa5104dcd39b37d70fe0a332a0d89558b
MD5 64de7a92aaf73b832ea8ea17bbba2c22
BLAKE2b-256 5cf579e047b3f5c2402c9c8e365a6201d5916d5ab9fe5480122f0ede97ce9236

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 215.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8e8ea5dcefd3a9102abe6eaa28f71341ace7f0fce8a2199babec562765612cf0
MD5 034c4d94555fef3aea416ea1960ed3ab
BLAKE2b-256 da4def796c1047e818e879c40694c04726d081d0ccc4d0d5e0d9b5afa7daa3e5

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp39-cp39-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp39-cp39-win32.whl
  • Upload date:
  • Size: 205.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9522e837d41de015faed4db68bac4900c8a911f525f81d28349c5984952afdd5
MD5 32a19e94fbf45c5e437e1db020dc93f9
BLAKE2b-256 db0c064a330e7a2ff0af0b5d863297f1c9085f81007eb296e2735523db5ca1fd

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 868f81a91d90ecfde65534ed784e699c80be861be0cd9c3483ce45ba9fd476b1
MD5 4c983eb8434015c4ee8644315d9eb297
BLAKE2b-256 9fa39cdec17d9fb01272c3846cd1d60efd68fb4a8c687a2d2916a0ec6e68b55b

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2fe9eb62d7a10e5e869b71d338277fcfb91b77c625000261185359b534bc6d73
MD5 331ac15f6fea744e4c8b6e785f2f20c7
BLAKE2b-256 5aa699ef1a5efb4a38b51de693635ca470c0399d8bbc02293dc687075d99a25c

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ad5b6242f9b7a0e5e29c9468a0e13d99bfea3910475b56dafc3f6f34e1a823e
MD5 a63f203ad684693222a3106b8441ae93
BLAKE2b-256 fe86aae8a3d8ec040fde904681af4929abdb65a7f30ba7e8a2bf6f99f9c9b835

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 216.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 71790a3880efbc965d2572683d0a6b927276d1247c66b11f06f06828e57eb323
MD5 2b88910a45462e0f123b4740a15cb902
BLAKE2b-256 8f3a61bee9e86543424672166232842e15670dd0872fc9ee6dc0b7f7b4dcc845

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp38-cp38-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.10-cp38-cp38-win32.whl
  • Upload date:
  • Size: 90.6 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.9

File hashes

Hashes for KDEpy-1.1.10-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d2674636ae1751b7a83939890c4d28b6eb0a5df561ce5fe3647a2daf7b0b2498
MD5 0ce76bb2171525d170bd12446c1017bc
BLAKE2b-256 15e014b24d9b3e433a17695581df3164e68659db8ae8cce9217b29adfb85859d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 331260ed01821e4ad4133cbfcf9af4f6cfe144a7fc34518a041e6a1233331bd0
MD5 dafc993829667d9bb4471aa581661594
BLAKE2b-256 5fad2b7210ae2348cb723119c6bd9f7c6a18d6150f81f68db32683e7069c813b

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb76dec6ad4555f7b7f4e77deecc09eb143573c5451f1204973c739b158fdccb
MD5 9d60ebe494f785e069cfe6c756fd9109
BLAKE2b-256 14ad17d7793c4396d77c30458ff0e343886a03574a5fd98c7331ad651b10855c

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.10-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.10-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c4c41d3094db940ace16b48714737cfe9e89cdf491e7651e484bf51457343e7e
MD5 a250c5424aba427036bbf5a51770005b
BLAKE2b-256 ef4f4445bad9d6e5c1bed8b63a98b1a981307120e0917192acdc7b20bc518fe3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page