Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build Status Documentation Status PyPI version Downloads

Want to cite KDEpy in your work? See the bottom right part of this website for citation information.

KDEpy

About

This Python 3.7+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

KDEpy-1.1.2-cp311-cp311-win_amd64.whl (211.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

KDEpy-1.1.2-cp311-cp311-win32.whl (202.2 kB view details)

Uploaded CPython 3.11 Windows x86

KDEpy-1.1.2-cp311-cp311-musllinux_1_1_x86_64.whl (569.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

KDEpy-1.1.2-cp311-cp311-musllinux_1_1_i686.whl (544.2 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

KDEpy-1.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (568.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (550.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.2-cp311-cp311-macosx_10_9_x86_64.whl (221.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

KDEpy-1.1.2-cp310-cp310-win_amd64.whl (212.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

KDEpy-1.1.2-cp310-cp310-win32.whl (202.8 kB view details)

Uploaded CPython 3.10 Windows x86

KDEpy-1.1.2-cp310-cp310-musllinux_1_1_x86_64.whl (559.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

KDEpy-1.1.2-cp310-cp310-musllinux_1_1_i686.whl (537.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

KDEpy-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (550.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (535.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.2-cp310-cp310-macosx_10_9_x86_64.whl (222.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

KDEpy-1.1.2-cp39-cp39-win_amd64.whl (213.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

KDEpy-1.1.2-cp39-cp39-win32.whl (203.6 kB view details)

Uploaded CPython 3.9 Windows x86

KDEpy-1.1.2-cp39-cp39-musllinux_1_1_x86_64.whl (561.6 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

KDEpy-1.1.2-cp39-cp39-musllinux_1_1_i686.whl (539.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

KDEpy-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (554.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (538.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.2-cp39-cp39-macosx_10_9_x86_64.whl (222.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

KDEpy-1.1.2-cp38-cp38-win_amd64.whl (213.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

KDEpy-1.1.2-cp38-cp38-win32.whl (203.5 kB view details)

Uploaded CPython 3.8 Windows x86

KDEpy-1.1.2-cp38-cp38-musllinux_1_1_x86_64.whl (570.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

KDEpy-1.1.2-cp38-cp38-musllinux_1_1_i686.whl (548.3 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

KDEpy-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (557.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (541.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.2-cp38-cp38-macosx_10_9_x86_64.whl (220.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file KDEpy-1.1.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 211.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ef05c7ff8b9386761d20061d90d730f91192265ce78ee7b0fac74914ebb67384
MD5 e7cf623a849d43b2c29d7f8a0d284cd2
BLAKE2b-256 782cf78cdda5199a2c4dba8aa68126dbd2d70962e23b0c1bdd81ad48595112c4

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp311-cp311-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.2-cp311-cp311-win32.whl
  • Upload date:
  • Size: 202.2 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.2-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 83530736b0cc856d364e69b4ed8881d5dde6161091058dca6bcb5ce2646aad6d
MD5 2612e6942a3955d4c71e40c5a6d29ea4
BLAKE2b-256 e02d2aea075d4ab91b3604d55a7eb2cb040b7130184ea1e993446d4733977b14

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f5c1d0b4728157698e5b7cb4350d8bd0090fedf1d0de5c637c9fe1d2a5e73494
MD5 fc14f5cf8a4775437577257937bca708
BLAKE2b-256 6193b39282ad00dda3de91fa62313d3e32c18a64bf3721ee1040e16915dddf3a

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f108426d3c7d59fa92f63fed6438a50bf3c3a183b456ef27e20767295838446e
MD5 7d1e778d7d90dc4ba5f7535d4d040ed5
BLAKE2b-256 097a7671c987c2722a1536944c6e354ef63bd9bba76ffc806b7a4d06454ec052

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 35bf4d5058c7395ae4e1da96b13949ebd12f66a879507694a7b12a2ea38b238a
MD5 9c8b168af430b57c77f2c42970b777d6
BLAKE2b-256 26b01ebc74237e3cb086f5eb3ac68b0513c12204bc37b8336b560beab1972814

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6d117d7925884390e7a0d1761e3f2a9fa8e35c2d71f15a7b0f40789ff23aab89
MD5 92c50792b5f6ef6dbe21c3ecf224e488
BLAKE2b-256 4136b0636a03cce55ba078b48bcf6dc30555ab0f716de75c6a51a4386ca85302

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 68c1f7dfce7450e8f526d88e1c31bbdb2d88d8d0525ce8beaea2eb089ed40b99
MD5 6d5466770c1fabbbf803731dfa62d1ff
BLAKE2b-256 e10bea2f51455b2ef2d4499461f4a58b58c80dc1e9dcd7cc50af405064963e93

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 212.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2a052de3f36e3c42657d0efc03c359882194e4327baa8d911bd6fac4cb65088e
MD5 fb0c442e2afa0b6ef548a73fe2ad1b11
BLAKE2b-256 3d376d1e545a147917afa59482daa45002137c272a44d0ce6c8332df41fabaef

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp310-cp310-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 202.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 764098a194504aaebcc95c09fc67eecb2c6120a3dbeae26ce5b5e2a5971eabde
MD5 3dc5ed0dcf47e334007db32e27fb0bc2
BLAKE2b-256 f43e44bf08ce2ce686b548ccbc1f97fee1ea2a7de52ae829a83cbe3270481cb9

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 08d37dcd4c65c0fd5a1aa2eb21060f6488b6311b623287ca6745e5f48ee0228d
MD5 6611dbb574c89871b3351c54f3c16ee5
BLAKE2b-256 7afa349d4bf5693bd1b7eae3e1f8698c24eeb79c79bd80842ce019b3d4995875

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6e19726814079f0a5ffe607b808a42708825281e9fad90ec794c59f215eed3d8
MD5 55045c80b9abc234f41fe8c47fa45277
BLAKE2b-256 ff02efcedd093151975bda17fb5b6d415f61b760497cba87d486902fd2848012

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abd18be88c532a38a3476d8ad1fd9c6d1e36f5fda11a23c430eaafa71c187d21
MD5 3fd6b06a22c863fee69f33aeffc0350c
BLAKE2b-256 49437111dd79f24fe8a33636c962e54973dec95b4459181027aaf17789ce2d22

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 19f1799547c5e43666d6164460e7f8ae9e4661e5f06a6dae314ffe8e97585581
MD5 a751f1c2d3b5e53a82390b9ddede1a2c
BLAKE2b-256 8eec41ca8859a54917d96109f420dd0fa170a218d99c364300b1c4a66e3e5282

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 48e634e0933e90a64175bc6c00eab433cd2f70fbd03cacfec2331a268a19442e
MD5 ccbab6adfbdfa01eaef866747cecf0c9
BLAKE2b-256 b328dbd478a2dd5c67b89b326cc44fa0cdd905153c0d75fd03655efdf687e75e

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 213.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dba54c3a9d2f92e1c060b84350a4ef9050be3ab979ecc88ab87fe688fa5d7f57
MD5 efaff4472b5984164e2d3071efe7f0ed
BLAKE2b-256 9730cee523467a00d57afd8a7944be31c982f7ae0e89a75ab42390b2bf4115ef

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 203.6 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 136ef19ebcdd5d7f61d918f4d6fe15b585a6e3b074cc1143214a822650b8cf95
MD5 6fc4cbbb56ec6147dfb96e3b5972002f
BLAKE2b-256 14099eee07558ebf90d5186a4aa69d7a9b983f98b5093b6e45c092171b300fc9

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 424b671eba740732fc73c64e2567e31782b3c0a3d0698aae37cababf3e55a310
MD5 2d0f0c50bb01af8e9f5e9205236caec6
BLAKE2b-256 108fa68e1edd7db2ae3acfa0e1d4ee3a8b9203f8c4b2e0c63f82526b6fa97e3d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 25bf110a0d6347024614923d5fd83c29c5da1e7aed28a67fd36ab466d0583d87
MD5 20e1730edfacb721bf867edc3a78dfe2
BLAKE2b-256 e5472c76260634945c3e530786c4a79c0a78af1a184ee7fa167c995a7c10d31d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 953c2071c7ae0f173cd53ca2916cadcff6d6b88070b5a89070afe4a5b9e581d0
MD5 d56eb1d2bb6aa1e816f2621eb435612f
BLAKE2b-256 fea20ac6418018c624f0164ac1444a88fbc4429835d80f64d56eb517630f9d94

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b5677d7b969180dc5d3973c1ddb7466fdfe22ecf39eba086cf451897130ac80a
MD5 2b7998790160a998eb8716fcb48b5301
BLAKE2b-256 cdec90ee887858f22dad39e07af884c98294b48165a987424a9bbd59dadd6649

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ee53d1dc744cd8595a4904509aed99b77509deee1f78882621098ac00f3ca23
MD5 7500265521cc72289956ff362f257522
BLAKE2b-256 0bcec412c33480b5c332fb20b46fe6122ba74f931479e9f8e9e4fdb2504b7fbd

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 213.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 60aa61197b73bf24ff5765fee296c1357b294bedd76ec603e562e7b540adb41e
MD5 20c6cf2d94b56e223da3ece0ca6cd17e
BLAKE2b-256 fc4e2a7daee7f958907994bf992df0ffc01aa64bc7db78805ca3439aa0ec74ef

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 203.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 656612f68f2539b94c65dad8939b47b4ff24de92ad6e83cf8273ac4b53f2dee3
MD5 785e0778c4ce974461c3af50b1e83bc4
BLAKE2b-256 c060f0595cfaed57a40c2611d0585f0050931588e1d4f1624d3434379a5a898c

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6600c8e0754c87a7d282e99a6eef12a9a9704c0762acf5a7c50ba16db67b3281
MD5 90903207ea560f0ec3a1251566a88d07
BLAKE2b-256 113e0a59cf35865bf094fdb3944a9cb3eb3f8ea76d8017820898996b4a6daf7e

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 1703fbd00959ba483b1bab80dac12e4d6e3087c4ee30c36d537b067a64f4f35b
MD5 c0faa89b494b0a711a89640c62dd32b0
BLAKE2b-256 82319ea8a0b891e41dfc093a4870e432f16d1b1a4bbaf7d2e83a4f1787667f5d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0da62c4902121907a62c360dee5830fbf154e73ff652892e9996119b7e8791f5
MD5 ac8245c8f6bc9d880ee445edd1dfdd2a
BLAKE2b-256 723fed2af690be6ee4d1fb1f8a3069bdf16993be3ab5e0a1ea26be2a864f6412

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 71806571eeb7d7ffbbc592b93ff0ec0a1c88b8133b1acf42878166829d061e3f
MD5 9c84cb9aac1be640e107036077d333a8
BLAKE2b-256 4c08acd7a9c4712f21af3c0a439317cf553e4baf35dd1673909dc123646cebcd

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a0d71c686a59a8b183e4ad3fc5cdf98d4570761285ee88389a1e590ef5080439
MD5 ad9b1ff8d4421a0aad03332ea2c1b4fe
BLAKE2b-256 c1b08e0958f484251336718ffef8eff08d7037166404007da73d2cf6adf37fc5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page