Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build Status Documentation Status PyPI version Downloads

Want to cite KDEpy in your work? See the bottom right part of this website for citation information.

KDEpy

About

This Python 3.7+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

KDEpy-1.1.3.tar.gz (138.3 kB view details)

Uploaded Source

Built Distributions

KDEpy-1.1.3-cp311-cp311-win_amd64.whl (212.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

KDEpy-1.1.3-cp311-cp311-win32.whl (203.1 kB view details)

Uploaded CPython 3.11 Windows x86

KDEpy-1.1.3-cp311-cp311-musllinux_1_1_x86_64.whl (570.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

KDEpy-1.1.3-cp311-cp311-musllinux_1_1_i686.whl (545.1 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

KDEpy-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (569.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (550.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.3-cp311-cp311-macosx_10_9_x86_64.whl (222.0 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

KDEpy-1.1.3-cp310-cp310-win_amd64.whl (213.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

KDEpy-1.1.3-cp310-cp310-win32.whl (203.7 kB view details)

Uploaded CPython 3.10 Windows x86

KDEpy-1.1.3-cp310-cp310-musllinux_1_1_x86_64.whl (559.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

KDEpy-1.1.3-cp310-cp310-musllinux_1_1_i686.whl (537.9 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

KDEpy-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (551.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (536.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.3-cp310-cp310-macosx_10_9_x86_64.whl (223.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

KDEpy-1.1.3-cp39-cp39-win_amd64.whl (214.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

KDEpy-1.1.3-cp39-cp39-win32.whl (204.5 kB view details)

Uploaded CPython 3.9 Windows x86

KDEpy-1.1.3-cp39-cp39-musllinux_1_1_x86_64.whl (562.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

KDEpy-1.1.3-cp39-cp39-musllinux_1_1_i686.whl (540.9 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

KDEpy-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (555.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (539.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl (223.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

KDEpy-1.1.3-cp38-cp38-win_amd64.whl (214.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

KDEpy-1.1.3-cp38-cp38-win32.whl (204.4 kB view details)

Uploaded CPython 3.8 Windows x86

KDEpy-1.1.3-cp38-cp38-musllinux_1_1_x86_64.whl (571.1 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

KDEpy-1.1.3-cp38-cp38-musllinux_1_1_i686.whl (549.2 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

KDEpy-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (558.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (542.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl (221.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file KDEpy-1.1.3.tar.gz.

File metadata

  • Download URL: KDEpy-1.1.3.tar.gz
  • Upload date:
  • Size: 138.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.3.tar.gz
Algorithm Hash digest
SHA256 7a5601ba930cd86a780a2720f4aca2ab232606dfa9eaf2f8a78af8785e9d9758
MD5 7cd7e7d80c825fdf7756b50afc424cce
BLAKE2b-256 745a67f36c7bfc064c0997b6238a9c5e0b48734eef9b09d4f083ba5c2c638bfd

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 212.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3e4570ddbd8c81d0197c34e77ea442dfb24df222eed9f3fd5f63f3bad04a8093
MD5 bbebd843b55e6a651f15984422797ded
BLAKE2b-256 42360ecc28ae51973ba7174d4d28607dc280f37aec089e40cf9630636c306c7e

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp311-cp311-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.3-cp311-cp311-win32.whl
  • Upload date:
  • Size: 203.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.3-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 0b5536a6990e065a84fea95d5064afa6fedd7f746e1bb08d4fe46ca8cc614fd6
MD5 a9daa865c42f9d1cb959f8d65c81cea7
BLAKE2b-256 2d7e41b453d08fafc8c2982e6adacd0ef13eb63e44d0989314f81590902ed9c5

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0f1719302f9c573c7ec6ca395230e0b392a08350464fa9b7332202a3f9c59a86
MD5 e5622e7de1879be4a1faac5a5c5fbe36
BLAKE2b-256 ebc808d180f89afef031ecf3d770064943df8fb845ff7442a08d36743e219e12

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 994a01b2622b3ae4ecca720286cd8e1eb817d14486f73b53803e57e144b58b04
MD5 4ca8495674d1097b300936e3eec5c64d
BLAKE2b-256 361b0f18e9932e089d25397dd2ff1d0a1758fa289af4ed396fd78fc6eb1a2618

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a73257b32ddc836fd743b7b0cf959432980cfd58e4b1b028ec8aebba1ce5553
MD5 1b4f70308131ce01e85c8fd2a87a8fa0
BLAKE2b-256 e69c165fb867c4364049646c20ecb3bb3da4d23bb4df4d42fe019a5feb79f5a6

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 286dd1eb438adc94e1b77c0a37e12801a85c35abf64950f92971949cde82c94d
MD5 f397b41aedb8b141c3da65d5910ccd7c
BLAKE2b-256 f24994c6e9285c75adf349e0ad06cff38258e911dc07314399946a449913931b

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 62c068732aa480dfe66238f1096f900cd1bb061c214495b6ab295fb42eb2c21f
MD5 a190481c2b94c6f324efad5058d0ca30
BLAKE2b-256 105b6b316af0ac2ac958fd4afde8a675e1a5cc75bf8ce85b8d6325b49088ff76

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 213.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ae01a6319382c9a7088c2e84f365cdaefe0ded5b813eb9506b4d94ec7d13cdd1
MD5 04cfcf685ba6da5c902e1f8b25ed3be4
BLAKE2b-256 7299fddea78e737170e7c75d1306381f313b296e88096ca576598e774053faf6

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 203.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 83bdefc2e6d975fd11ac66d73deeeac5b927861187cfa240ad90c24306c6b3b3
MD5 56bbce5dd9e5bbd915a6b1b3ed58ea74
BLAKE2b-256 f8aa0e4a0240d3613427e7900692a4472ad44bca58712f0ab23fcca946c261e5

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 db8d12235c0fdc845583bb57ce004dbe95b78af43c58ea95f953181de0c10323
MD5 6b96564e41a95c394a5e414953166166
BLAKE2b-256 b7d58d5f2a2169cf8df49bd1ba1a37c990e2cf3ef497710be1a5bc9721adc5e7

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 30ccad0c3c2e40d7c03e1c7c9deeb8e17ff2b504daf1cf30007847bf5a224d65
MD5 4de81f423aba2817f8d9253c8d19cbf5
BLAKE2b-256 80daa3f93136eda8b2cd8a7252e518dcf19184984ce69334881947a45255a1ed

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d259c3ddae575ae391140ce706d17d58468a78aa011b02b54d30251824cd7d50
MD5 cf9c801c00cfc9df9031fa2eec364db7
BLAKE2b-256 6e1f0761d696ebba84a4499af0cce7fdabc190d3b676696d5b148680dea34749

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f8692866649a49af3b64a61df5b04f0ba5460a26c362c09eb96c3851e09d231c
MD5 923704144bf68223f91ca17dd8aa1a6b
BLAKE2b-256 114361747ba5cbd490fc739864a1e867894f8c449fe08204ceb10823a299bc34

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ef9cd2416a0c8c1b4a4ecc7c6f07f1228c89dbbdc3d206a4851b36a25dcce1fc
MD5 d141c3f1935b997b47bfea36f956f321
BLAKE2b-256 29ca967c638197f1db879c2542fda2221b3dbf56fbbf7c0435e0045af0fa3a31

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 214.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e855fdbd607de2e55fb1f24b33f8895158fe8c90a8aefd7698d31df40dabdc2a
MD5 59d3c38504b52ff2048ed267fbdc4532
BLAKE2b-256 4da822226e2ef3bc403c1e5c2fb4ca470a191b511433acfb16cf7a53a8a6bd60

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 204.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 eae34a104bf2425e867e168ef1f779b5a73303b89ca38868be24eb562b55793a
MD5 75b8e01da44b9cf3594db0d11aaa668b
BLAKE2b-256 44d056b003e2bc7c63af91a59ef2b198d7902784171cf3e3eaf1d5d99ac7edbf

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4738e175cfd6bb498392d82d4988b3d4cedd29d654cc6803d6949988e7a7514a
MD5 c525b12cd037a2c99a24b072baa79feb
BLAKE2b-256 d1bb6410ff8632e6fe317632f4d14de8bb33972c03e7432bbe6a9b9525332053

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 998091138a543f9817e45a4bb69c625a87a4590d5734eb6c08767472d0c216cd
MD5 9271a134e8a9ee30d1181a317b804d59
BLAKE2b-256 de090d7d3272be75327e3db525701481b188a0139bbdad4e3b9001cff1003e6f

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3acbc200e33259f753128a4e560586eec364b8c56324b44daedc48b69ad1502
MD5 aa7236f5e96aede506dd9ae7ce010c74
BLAKE2b-256 2649ee634f3a32cc56697a944616406aa21c1283107714b868cfe9e0a1e43f01

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9ec0dcb619c2ceeb133c16fb8dfba1e26d1597652e4ac38c4487891c1a3bc8a0
MD5 431c98c6a05b6567328308a5a62d5b39
BLAKE2b-256 be172c332384866fc30a6eabc05c10315141d84fe3dd4768a570eacabe32dc1e

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b661955ff03c5f411ddc48cd752fbde9bc8f664e828fda3334323e8350391ccd
MD5 37a9a5f8e10ff8702556f4b6d21a42bc
BLAKE2b-256 fb6688d528228fb62297ee9efe44953dad84b67866bee77458773d702488b2ac

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 214.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cbcb33a49aa9a31eef422a223bc7645fbabe6c03ff2802e7228641f6f1e736ff
MD5 be01442336de751a980fef1adfd65802
BLAKE2b-256 675b6eb0632df1373b63dd916b3bafb1e7de43499891f8cbff67363e30cafcf2

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 204.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 308679c1402cb6943e44819296627d1cfff9356f273b40c3c1c9939809d31d4a
MD5 e2189d40fe8f2f08b083355c26a4583f
BLAKE2b-256 ae818f5d79eed8a89f22029be9d6ee69d3bf6c3d8a3fdcc1ab2c2c27020859d8

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a412a51ff82582db5696794c883dbece1ebaa69570c8f0d0f4d0d020261a766b
MD5 65bdfa3e83731cce901aa386019b6552
BLAKE2b-256 05855b16826f00adde9eb7bd85784ff062193ce7c5eeef5cce2c8cf6120f8bca

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cd5d5c246b8ffff875a8ae91ec5b20ec62c8180ae5311f6771cb215a606c8ce8
MD5 b7b8e7eecb2f236ff5d241f95590000f
BLAKE2b-256 aa1c20ea50af9a1ff224a44b69f479009c7df1b7258c72ad16cd5141b32411c9

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 66fb2a6d9dede4735cd6502fa4803148e76ea8b3e049fc47d99af4797a2908b2
MD5 4f21088f91f73cf8495f3a5be6fbacb8
BLAKE2b-256 684597adb8dd6c95613050bb4cd26b758d5214a27e70960e22324016c5a897b4

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9c488ce8eba7a0b1bbdefd2943845675fc37e04144b8c668350b0007e8d5715e
MD5 bfdb55028321b6ca030f5120fe09a9d2
BLAKE2b-256 8aaa83254cf8dc7af473f7dfe210e72ae58ae945f7665e8e0da7f4b4df63b4eb

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ec7b5f442b323551e44b5284604267b45d41d58b0cb60933a1f5d5cd9d6d004b
MD5 cbe132e069a9a43568fe19466d2c33c8
BLAKE2b-256 262ffe2f97abb25665ff07b1e1d07c74a967c188f9eb09756dc48d6e57023b28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page