Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build Status Documentation Status PyPI version Downloads

Want to cite KDEpy in your work? See the bottom right part of this website for citation information.

KDEpy

About

This Python 3.7+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

KDEpy-1.1.4.tar.gz (138.7 kB view details)

Uploaded Source

Built Distributions

KDEpy-1.1.4-cp311-cp311-win_amd64.whl (213.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

KDEpy-1.1.4-cp311-cp311-win32.whl (203.6 kB view details)

Uploaded CPython 3.11 Windows x86

KDEpy-1.1.4-cp311-cp311-musllinux_1_1_x86_64.whl (570.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

KDEpy-1.1.4-cp311-cp311-musllinux_1_1_i686.whl (545.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

KDEpy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (570.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (552.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.4-cp311-cp311-macosx_10_9_x86_64.whl (222.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

KDEpy-1.1.4-cp310-cp310-win_amd64.whl (213.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

KDEpy-1.1.4-cp310-cp310-win32.whl (204.3 kB view details)

Uploaded CPython 3.10 Windows x86

KDEpy-1.1.4-cp310-cp310-musllinux_1_1_x86_64.whl (560.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

KDEpy-1.1.4-cp310-cp310-musllinux_1_1_i686.whl (538.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

KDEpy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (552.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (537.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.4-cp310-cp310-macosx_10_9_x86_64.whl (223.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

KDEpy-1.1.4-cp39-cp39-win_amd64.whl (215.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

KDEpy-1.1.4-cp39-cp39-win32.whl (205.0 kB view details)

Uploaded CPython 3.9 Windows x86

KDEpy-1.1.4-cp39-cp39-musllinux_1_1_x86_64.whl (563.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

KDEpy-1.1.4-cp39-cp39-musllinux_1_1_i686.whl (541.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

KDEpy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (556.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (540.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.4-cp39-cp39-macosx_10_9_x86_64.whl (223.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

KDEpy-1.1.4-cp38-cp38-win_amd64.whl (215.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

KDEpy-1.1.4-cp38-cp38-win32.whl (204.9 kB view details)

Uploaded CPython 3.8 Windows x86

KDEpy-1.1.4-cp38-cp38-musllinux_1_1_x86_64.whl (571.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

KDEpy-1.1.4-cp38-cp38-musllinux_1_1_i686.whl (549.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

KDEpy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (559.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (543.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.4-cp38-cp38-macosx_10_9_x86_64.whl (222.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file KDEpy-1.1.4.tar.gz.

File metadata

  • Download URL: KDEpy-1.1.4.tar.gz
  • Upload date:
  • Size: 138.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for KDEpy-1.1.4.tar.gz
Algorithm Hash digest
SHA256 b26c8abd7036cc326038a8b9253f95e39846cb55833697fa775e05ac58c9c455
MD5 6b108dc8d2890612f24bc40763c94264
BLAKE2b-256 6e706061d2deb73d94a66a40cbf00d28079fed732b908cf2c3e86bc7963ce19d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 213.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3efeedc3ee8c6f4766cf008a26b1954835758e3d029886fdc76e858fcbe7c009
MD5 b7410891313d3a77312dda8f48a8d96f
BLAKE2b-256 09f5a4ede2b58d1517b585060e2385ebf35522c0f9159ce84d5c81d01b3bc866

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 203.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9cfb4b8ad3a5f8f05a2b1b2c2ffa3dc57412285f4b2abde71bfb69f4b365c4cb
MD5 273874ecf489bb5a40654cdfef15cab9
BLAKE2b-256 ecb13f58c2e026665871bd258cc8bb4045d73011e5d9b92e986d866b7f5fa04f

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d7a8edcce00117e8a00e24ccfcb30455c9a7b22923cd4cf1cab74d8527e402b1
MD5 67bb1a27129ece7f4bc90af303045f83
BLAKE2b-256 0d473bfe225ddde87bda1de0a1b3c1fed1530c946c595637d570fe91f749a2d1

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 266736aa5a2dc24afb0a95f5b7a062dd871e91fac7fbe0c18471b4bbbae6585f
MD5 a754dc44b2bf3ba2600f0a206f297d30
BLAKE2b-256 02e904aa27fb325fa5d49e05999d7caf6fb8452f4bde96427fa634b5e83eacec

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e6ef80f1a9f4d76ed835294cec6f62d1d71336e61401c11eed5212b033ffc6e6
MD5 1817addd29300001e708ff33a96a40b6
BLAKE2b-256 13eb4194f69842f53f19c2cce3cf59cee6daf64df866094956c9722d14c8cdca

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ff7bc0583c242d1c4a3460fb2cbb87e43b76c695112d8f84e621b0a7ec041949
MD5 019e3dfb1da882fbd06d1fae10b8b1eb
BLAKE2b-256 6a5050c49fd49361b5ef93e5c68d3fe99e2b11bc8c24c4aca4c76eb4a7312eae

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a4e886e80789f978d79b71b9ce932462e27a94eed7c4a414d72a305350379c6
MD5 65d293b527863b3ffa487168ef054684
BLAKE2b-256 84f8a73f2b7600b0df5eba0c0f2b25df01be9e75085abf0f14796efb95d71013

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 213.9 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 46c64e80a1b187109143c6362f8519fc1442c97e44053566da4c5b0f582cb845
MD5 a0446e37a4dee96ce32b2bad32afc1f0
BLAKE2b-256 23cb9f83706775625ec7ae9768ed733b297fb83bfc87626e6b25b93e4c36f70b

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 204.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a94a7c186e746df1a099836057d5ef0907d4ac583db410d6c100d8299871ddd6
MD5 abe0e89c3c330d42c63f0c70cbba5bbd
BLAKE2b-256 c961c08d8521f347c55c339c6d927070b262dbee8050e45fbe81efc0278a0df9

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 7bbec36e62a2994a2c12f80554e683b60e6ae0687bd9a1a6c2dad15b725fb60a
MD5 7525af5e35b1f85ec6ba64abe92ba970
BLAKE2b-256 0aef0aee575bf61ee7fb62445a1249266925f9fc6ada13912cae639a9419b605

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2eb8829d50082a6165c1a0d284d09db297d59b3158497d1448b6663fdb035fd3
MD5 26b9ff9f3fdf9f809d6ac1dc23ca3fd2
BLAKE2b-256 11ca57f9dd3364b38a6b88671a60c8d9f11bc02c0410ffb3fe084104e8cc416d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b541c8ea2b15f2ce63f822950521531a4397e554b4c9e7337aeafc841a100ea8
MD5 3220b14c6b5018e1364e550d5dfe1804
BLAKE2b-256 f80374b2608c122bee31e62144d1d34e7705461d1ccabe5b524fce8969026263

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 06dc04580a745bce3f2ce9d7105c5c8bb0e8b5205110d998e8bf4b5e172cd121
MD5 417837f7bdaefec070cc3d5bb11856ec
BLAKE2b-256 dab11760922a4d733a37f66b5a00ee61dc348e8dde0fe013a0a3fffc5c65a412

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fc88e096efd4453ca6b32cc4d63c7833c5a495c63158962d3549105480642c3a
MD5 62ddb012dbda033123f5b7c9998e2d52
BLAKE2b-256 1f7500fc54eb5db58cc64638f386138556cd7835538bd1553e5bebfffaedbdac

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 215.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 631522058f0c3c6b54348f0b8eca1753cc108bcc28cf29586bd99184faef752e
MD5 ce0925a5b10d3094ed4712cb01f70bdb
BLAKE2b-256 19cd08c213260451250bfc4a4e55a607d504e4822f99be5560439da121e91029

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 205.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 005636c1f5d6dd222776d860ad5f282645042e9cd7c080f4fadc2b5ca5e3c299
MD5 a8bec25ef886ad39a7eaeae4cec159e6
BLAKE2b-256 aeabb07b4f216ef64db0d93efb2f3adacf7df2a5cd548620858550555232eced

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 77bedacc7b1857c02c36a09ab4feeb32bd32d61e36867e155f460f5fb47fd24e
MD5 a0885d231d46e6337c6ede0a219ec03d
BLAKE2b-256 98c25ae86483f0eb3df90a14fca0ac2d221d5fd80a36e243f260134e56680faa

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 95db53e072e76efc2c523557628f9da5080b212a15e11be22e9741d6de5f93d6
MD5 974f6b8c9e3524d63112085f6d5f3cbb
BLAKE2b-256 461de0e5c51eacd535ad7eb045ad7339ccc98d5d6c3ad95be84245d8ec1ddd65

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4970936f7cdca9240ba7baa84c0feca07ffafd2ee918e273b83d4501dc268061
MD5 7242d1b05b485fb47f80e1954010a261
BLAKE2b-256 476a9334e221a97b7a724f450aefaaf6be3a60475ba94ef8edac869fbc2e67dc

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2c6fa0dc2f29a26494649e41082d20ddc1138ca19a0c8b4876e9f9713e945161
MD5 a9b570a8f8527157496fc1d979d1de82
BLAKE2b-256 63e44e47a868296d9f8a5eefa278847a32ac979eecae9256ca52352dfd21c60a

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a29fa65134c178960d1d7df046a2f5461aae42eb7d2eeec29cfd678f95a72b2
MD5 26c10e19370fc8d7c3514cdc518cb5d9
BLAKE2b-256 7ccdc40282f5de1132df3244085f23ed068c69c1d3de5f28bbb9b2dee7118e7e

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 215.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9917ba0acaba8a56d6899b684bb41171003696001de00a447f856e85cb7b8442
MD5 2ab23566a3a4bddf96d988bcd6cb7653
BLAKE2b-256 bef3d5886b52e8b64d6cddf6b5558c74b81ac14daa6fd2ff005dc6677bd05f9f

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 204.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f573f92fda2a4c5376ad5946dc6fc9e59e433268469c8bcf1d5f234f252a94f6
MD5 e95ac7094f3cbab3deedc53994fbfad2
BLAKE2b-256 9ad55ff5038fd7afd628545e27600b9719c8635e39931bfc59e10c49ead1b6a1

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c86dee63369f7c1f2ca76d2f85e8cc44fc22d42ddef03999512f0bf735bc438d
MD5 0fc6066b277501437799cf185e90a381
BLAKE2b-256 5f6e9b411aa211013870adc05eeea5f2ff910329803934cd0631bcd6ab3645ab

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4957c7b2bbc17b862fe35b5d1f7d47426b4e68091a0fbe26d851b06558e57365
MD5 7c37b1597dc1424882b813b84968fbbf
BLAKE2b-256 2ce6780332a12bbeae0d09cf36ed23bbaa8038db72d416e639da9457912a591d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85f266534b7af880ec5dcb67ca3088024e5b37efbbcfea5b18f31f6c840e9362
MD5 50c1755f54de0165a599904171f5ac53
BLAKE2b-256 933564098a399dcb6b7cdaba0780b802b0f0d24586867eb3814622b43c7d8eb1

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9edd769505e29087d801faec4f9a35b530f5654a893c9610937a792fca6ca0eb
MD5 8993cfd625fc8d929f60bff47bbe21fd
BLAKE2b-256 eb46972a43fa42a7ebba4e755e1829eecce64f640f1a27060adba35f41a455ad

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.4-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.4-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3cff12e9bfb7e7cec890fa16e9bb7e054a024b8f8343de0444824282c952f411
MD5 9950b0656a23fa29d3bf2bad214191ac
BLAKE2b-256 42e8f60b26b1f9540b44255223d5cefde87b711023cc3b880867d5f2168a903e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page