Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build Status Documentation Status PyPI version Downloads

Want to cite KDEpy in your work? See the bottom right part of this website for citation information.

KDEpy

About

This Python 3.7+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

KDEpy-1.1.5.tar.gz (138.7 kB view details)

Uploaded Source

Built Distributions

KDEpy-1.1.5-cp311-cp311-win_amd64.whl (213.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

KDEpy-1.1.5-cp311-cp311-win32.whl (203.6 kB view details)

Uploaded CPython 3.11 Windows x86

KDEpy-1.1.5-cp311-cp311-musllinux_1_1_x86_64.whl (570.7 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

KDEpy-1.1.5-cp311-cp311-musllinux_1_1_i686.whl (545.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

KDEpy-1.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (570.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (552.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.5-cp311-cp311-macosx_10_9_x86_64.whl (222.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

KDEpy-1.1.5-cp310-cp310-win_amd64.whl (214.0 kB view details)

Uploaded CPython 3.10 Windows x86-64

KDEpy-1.1.5-cp310-cp310-win32.whl (204.3 kB view details)

Uploaded CPython 3.10 Windows x86

KDEpy-1.1.5-cp310-cp310-musllinux_1_1_x86_64.whl (560.5 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

KDEpy-1.1.5-cp310-cp310-musllinux_1_1_i686.whl (538.4 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

KDEpy-1.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (552.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (537.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.5-cp310-cp310-macosx_10_9_x86_64.whl (223.5 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

KDEpy-1.1.5-cp39-cp39-win_amd64.whl (215.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

KDEpy-1.1.5-cp39-cp39-win32.whl (205.0 kB view details)

Uploaded CPython 3.9 Windows x86

KDEpy-1.1.5-cp39-cp39-musllinux_1_1_x86_64.whl (563.3 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

KDEpy-1.1.5-cp39-cp39-musllinux_1_1_i686.whl (541.4 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

KDEpy-1.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (556.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (540.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.5-cp39-cp39-macosx_10_9_x86_64.whl (223.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

KDEpy-1.1.5-cp38-cp38-win_amd64.whl (215.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

KDEpy-1.1.5-cp38-cp38-win32.whl (204.9 kB view details)

Uploaded CPython 3.8 Windows x86

KDEpy-1.1.5-cp38-cp38-musllinux_1_1_x86_64.whl (571.6 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

KDEpy-1.1.5-cp38-cp38-musllinux_1_1_i686.whl (549.8 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

KDEpy-1.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (559.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (543.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

KDEpy-1.1.5-cp38-cp38-macosx_10_9_x86_64.whl (222.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file KDEpy-1.1.5.tar.gz.

File metadata

  • Download URL: KDEpy-1.1.5.tar.gz
  • Upload date:
  • Size: 138.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for KDEpy-1.1.5.tar.gz
Algorithm Hash digest
SHA256 760c0a302d06d1566aea2b8c7f50f59b0d7bced03c8efbd06343c3b95dff5ec0
MD5 0faf8ad682dcfa38c7351eced10ee5c9
BLAKE2b-256 ca9310484a4438a9e2c19941c7855f2eb02a69c7e167bfb2c2803942da993bdf

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.5-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 213.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6a22cbb75e3fa9baf51b76a6f9a2e2409b66d033226047800dba76a6a0902655
MD5 8bd740a38f23c4e2c8d65b72986552c9
BLAKE2b-256 cded26273f1456f69579300aabff5b468c6fb3ea53678a0c9eb30ec420826502

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 203.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 f99683e95c6965971a696e8d2a65b3fed370a9e1c5cf9dee13587c5b9a342773
MD5 16d68c3058f0ec9b12e453f621e9872d
BLAKE2b-256 6393f34e8424f3f88d38da89ad73b2cf3f499fa6954e6a25758cc8dddf6bfa07

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c1496e3ade5d3ea6a324612829072b7ea023c071eba0c394c15accb5d5a398b8
MD5 1d7262c021fee93814895d77ebd36d4f
BLAKE2b-256 b6d94b8cd2581b2219101c2af84b648cd73dccd3e67d19c37f3e3c51dacd3cdc

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 c50929008fbeb8524bb63928ecd1cfff5af7d06fe2fc752c06880755c9e2f618
MD5 abce06df2c577234d94651ae70fa4ef4
BLAKE2b-256 d8d10ce9e181a9311cc164c65d4c7ede42f8c54068ab2d27f93f647328a4986d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b478ecee7aceccb9beb161a8c547cd822e0f343be5ade165aaba79cc900c7521
MD5 e375af6b9b7021c7cd9a405a48c9d839
BLAKE2b-256 2a68e5843f4a7b635f80444107980a3a8c100ccce6c8eae6d66b6e2050f512fe

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8d83326ae755b5a32d53e854a400c4fa4fc3e65e4360fc5dd7c32412808cc027
MD5 849f4bbae330c553ed1854d72143eedb
BLAKE2b-256 9830d92fa59559892e1e3557e2b04a4f2ab7249fdf54f95339655ca58b46eb3a

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8ed52cdcbc009cac94084d512955ec19573e926e2e61069ad386bc7ca8014b3a
MD5 6e3fbd827d08acb79516c7b8ac4108de
BLAKE2b-256 a9bd4cbeeb416f2e2551dc99e9cf9a95892b0c24366b12b2f29ec8feec726038

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.5-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 214.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1b18fd14d14cbbf7668247dd9017531bdbdca21758b7e521e6cafa68d1fdf6e5
MD5 f9fe47485d8274e6fae2e5c62a80b6b4
BLAKE2b-256 ef1e0bfbf53e90e3dd06b1624d507d1de6de9395af9e93153c479a504d143c67

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 204.3 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 9f06b9dc563a7aac40958ef1361dd1170987eb0e7f080b615dfe04f5c7815303
MD5 cb435aae09fb7ecfb70b0142744165ec
BLAKE2b-256 cd0b5485f76a49a7e2796d9b161543a7fd7f65230986fe6d83eef77fd3f94c22

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 33f0b5ed73666f9dd4dc3a3c7b0956f7c5953e54d0e6c6911d96cff6b615339b
MD5 c883ee075d7bd59965a75e50552a3e60
BLAKE2b-256 bc2b1eae5a79098eb81e78d4a8012374f3dc7874a1d63bdee21d4d34c8601b30

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bbae4fedad23524c3735300cecab4b237f549d91d4cbff9246b3719fb42d27bd
MD5 c721ece0945120f3d5502c60bdd54c24
BLAKE2b-256 65cb443d299b223b9c169334662020ca585e479c72292b87d130d01a13d281f2

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a720c2a300c753902a83eef1399c3b84a6ab19efbeff5ebf4a8c3df8c63b2c6
MD5 b731b2938ae09a83b5e9cad123fbcf3d
BLAKE2b-256 4b3b8bbf0d1573750f3ca2bdceab7a313ef31e2574bc8193a57e84c578939a94

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4b69b0d85e62aafc58d8618c8b16a43bb094ee5bb34858d7fe9f78a21e8db4b5
MD5 b31e3a39b9b3c34daef86470b1044f01
BLAKE2b-256 4a86b67976788e60aa35d294712dd5d4b72ac0461f28026f8b5be31d468f6e37

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4892ca51e636294318bac3b739ab96ec630acd281b43ff7ec9403c9d2e972fbe
MD5 4a30540e8307a49199faa9b651f8fcb9
BLAKE2b-256 74c0840b1f3289382063ba5ede7bcafeabf33f55cd3095cb5dabe17f64d99ba3

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 215.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ca0ba4856cc4b8f34d4aab9a10a3b169fb0694a8cd9129b79758d04391b450e5
MD5 a9f14c85d5b5de499b8e0ba8190f7da4
BLAKE2b-256 7ee5007e61df5db90df8dac424860339511683a725c0ea4c663a3b5c01363360

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 205.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0479a9cb28b0964ff93af9851659f268b494f6b113d388cef1fcb09dd2c2e070
MD5 3257d6548e4b4a129b2ed337fa4c89c8
BLAKE2b-256 7a42c3eb8ea565e1c01dedb580dd347bb4d0cf3934b67a364de48b2f977919d7

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 b9f1270da95ede197998d44c1db1cfde91283b3f7d502fc08f4c726e6e181c8a
MD5 bb374a906f4ac27db876d3bbe7d70bb8
BLAKE2b-256 5ffd88e051fa6ea7c78c7d31b3a6927cfded7640c322b16e98d85c7081a0df24

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 71f4153b52752ffee279f62168f8d00346b269a373196a324b16ba7bb2c88756
MD5 d566f1491e3c5b854b9ac1907a6a3615
BLAKE2b-256 b7d1be3205eb5efb08b0c6ccb36dc5f7e48473691eb23fcfbfd5e91fdbde17ff

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9bfb95b7075c0a51b89ff70d9d7cbba3afb1064deab79b2b663efe3932ec596d
MD5 8813799cb50673c1dee51e923b079c6c
BLAKE2b-256 5e3ca7ed69cca7a5fe0eb6eb2b1232931f2299a5213d1dec837d10197091e280

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4ea813f1c1db9930942e01a4951ced6e8e6cd90801a8b0c8f1c851599b355b48
MD5 21e9829c257041935118829e706091c9
BLAKE2b-256 a21babb5ef14124c5df1fd3a2729acccfd3fc6785b9338863562519b5c80bd61

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3485b6dc1c58c3ce48564eeb240952fb718cf22b8a226009accef421bf68e95a
MD5 6906f065cedb7ec4be5f31f0cad2be24
BLAKE2b-256 5f0e80349f121f74568f9f6f70dd132fbcab756797724d4a8fd0d42b6ae79da4

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 215.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5ea3db756d90667a2a9852e7135ecf7bc0396fe9f1d5ca18f7f4a5037c00f01f
MD5 307ced4ec5da81a14a4e7ca49d0e2595
BLAKE2b-256 be196a444132144a4365f519d939a7e1dc932ceb9b1d2b3197202f3dd056a157

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 204.9 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for KDEpy-1.1.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 22315953d47f608e48784cbacbf67477780bcd7a7eb50f928a635cccbff791ee
MD5 3eceb38195a235bf5d8cfbdf2867a7cc
BLAKE2b-256 ce3ed4a366a611194e56cf7bb0e2c1b8523e09fb194bddf15c60418d0a9546f1

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 6b1cbaef66f26bb4f2c933dbe292e7b899f0d830cb7616a036a8f230489d7d8d
MD5 c638e8b7c26a3f90b9ef5713bbab50d4
BLAKE2b-256 4634f2ea328521f223e543cbd3c019ac0d8b6a3aa5737a61113314ed98376068

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 79906e1c19c79d398eee3c8fb57940dcd77cb10cfb521d9126920457b820caaf
MD5 23990d41a4f4d7532e05efa2e28bf8dd
BLAKE2b-256 7cb1b9910484204d5e6e20d5d14921aca85d42317e5b088f532b62371af3b3e3

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d6ebda62ddf6b3315f39c236565a297ad12b19841865729b33263958c62ea668
MD5 8bfe3877bc822359f27a74169bcb9f0f
BLAKE2b-256 348989fe96526bc0b542fa2a7afe02ba62d4134ae323be74dcbc3bb3f8a3f931

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e793744bfacce7c47345b96947242d4f12f952374dd4986bd0394c84b57a2f01
MD5 1f485f2bf32229bb85c3dbb349839de1
BLAKE2b-256 8b46cf7bc99cc3da40e2f2b6476c07f6549f321fc78e13fada1ee4bcece6c797

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.5-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.5-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b8e4bf0b4fe192ccbc239ecdf9c9112936a1de3ef8bdfcf2576372ddbc4dd3d
MD5 df43fa5f4a2605598a004f43441e2427
BLAKE2b-256 7e9f566565e4123873d6c4c6a89a231f32ba71db68c87e70a51be26be319d03b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page