Skip to main content

Kernel Density Estimation in Python.

Project description

DOI Build & test (master) Documentation Status PyPI version Downloads

Want to cite KDEpy in your work? See the bottom right part of this website for citation information.

KDEpy

About

This Python 3.8+ package implements various kernel density estimators (KDE). Three algorithms are implemented through the same API: NaiveKDE, TreeKDE and FFTKDE. The class FFTKDE outperforms other popular implementations, see the comparison page. The code is stable and in widespread use by practitioners and in other packages.

Plot

The code generating the above graph is found in examples.py.

Installation

KDEpy is available through PyPI, and may be installed using pip:

pip install KDEpy

If you have trouble on Ubuntu, try running sudo apt install libpython3.X-dev, where 3.X is your Python version.

Example code and documentation

Below is an example showing an unweighted and weighted kernel density. From the code below, it should be clear how to set the kernel, bandwidth (variance of the kernel) and weights. See the documentation for more examples.

from KDEpy import FFTKDE
import matplotlib.pyplot as plt

customer_ages = [40, 56, 20, 35, 27, 24, 29, 37, 39, 46]

# Distribution of customers
x, y = FFTKDE(kernel="gaussian", bw="silverman").fit(customer_ages).evaluate()
plt.plot(x, y)

# Distribution of customer income (weight each customer by their income)
customer_income = [152, 64, 24, 140, 88, 64, 103, 148, 150, 132]

# The `bw` parameter can be manually set, e.g. `bw=5`
x, y = FFTKDE(bw="silverman").fit(customer_ages, weights=customer_income).evaluate()
plt.plot(x, y)

Plot

The package consists of three algorithms. Here's a brief explanation:

  • NaiveKDE - A naive computation. Supports d-dimensional data, variable bandwidth, weighted data and many kernel functions. Very slow on large data sets.
  • TreeKDE - A tree-based computation. Supports the same features as the naive algorithm, but is faster at the expense of small inaccuracy when using a kernel without finite support. Good for evaluation on non-uniform, arbitrary grids.
  • FFTKDE - A very fast convolution-based computation. Supports weighted d-dimensional data and many kernels, but not variable bandwidth. Must be evaluated on an equidistant grid, the finer the grid the higher the accuracy. Data points may not be outside of the grid.

Issues and contributing

Issues

If you are having trouble using the package, please let me know by creating an Issue on GitHub and I'll get back to you.

Contributing

Whatever your mathematical and Python background is, you are very welcome to contribute to KDEpy. To contribute, fork the project, create a branch and submit and Pull Request. Please follow these guidelines:

  • Import as few external dependencies as possible.
  • Use test driven development, have tests and docs for every method.
  • Cite literature and implement recent methods.
  • Unless it's a bottleneck computation, readability trumps speed.
  • Employ object orientation, but resist the temptation to implement many methods -- stick to the basics.
  • Follow PEP8.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

KDEpy-1.1.9.tar.gz (26.3 kB view details)

Uploaded Source

Built Distributions

KDEpy-1.1.9-cp312-cp312-win_amd64.whl (214.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

KDEpy-1.1.9-cp312-cp312-win32.whl (204.2 kB view details)

Uploaded CPython 3.12 Windows x86

KDEpy-1.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (558.5 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.9-cp312-cp312-macosx_11_0_arm64.whl (216.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

KDEpy-1.1.9-cp312-cp312-macosx_10_9_x86_64.whl (223.5 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

KDEpy-1.1.9-cp311-cp311-win_amd64.whl (213.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

KDEpy-1.1.9-cp311-cp311-win32.whl (203.8 kB view details)

Uploaded CPython 3.11 Windows x86

KDEpy-1.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (571.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.9-cp311-cp311-macosx_11_0_arm64.whl (216.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

KDEpy-1.1.9-cp311-cp311-macosx_10_9_x86_64.whl (223.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

KDEpy-1.1.9-cp310-cp310-win_amd64.whl (214.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

KDEpy-1.1.9-cp310-cp310-win32.whl (204.4 kB view details)

Uploaded CPython 3.10 Windows x86

KDEpy-1.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (553.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.9-cp310-cp310-macosx_11_0_arm64.whl (218.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

KDEpy-1.1.9-cp310-cp310-macosx_10_9_x86_64.whl (224.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

KDEpy-1.1.9-cp39-cp39-win_amd64.whl (215.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

KDEpy-1.1.9-cp39-cp39-win32.whl (205.3 kB view details)

Uploaded CPython 3.9 Windows x86

KDEpy-1.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (557.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.9-cp39-cp39-macosx_11_0_arm64.whl (218.3 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

KDEpy-1.1.9-cp39-cp39-macosx_10_9_x86_64.whl (224.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

KDEpy-1.1.9-cp38-cp38-win_amd64.whl (215.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

KDEpy-1.1.9-cp38-cp38-win32.whl (90.3 kB view details)

Uploaded CPython 3.8 Windows x86

KDEpy-1.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (445.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

KDEpy-1.1.9-cp38-cp38-macosx_11_0_arm64.whl (216.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

KDEpy-1.1.9-cp38-cp38-macosx_10_9_x86_64.whl (107.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file KDEpy-1.1.9.tar.gz.

File metadata

  • Download URL: KDEpy-1.1.9.tar.gz
  • Upload date:
  • Size: 26.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9.tar.gz
Algorithm Hash digest
SHA256 4bf0b2afd430ce5b40fafd98144de83d8b715d46fdf0f45fed2b5c2e9c40ce46
MD5 bbec9c38c25470f0563cb667d4d56141
BLAKE2b-256 07a2f6cbfa56c908ab3251f971096e52f474c57ba2519342745df759b8eaf821

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 214.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6c1790fd6c5edf117a4b04893b82c2ed081e18c48a5bcfb5963b10b78655e5b1
MD5 f1dc3cbfb9b8ea1de276761c77a60aab
BLAKE2b-256 f211207ef304b751bbffb614dcca763f7d62cac66a61e1c679e23c4f0c94ce18

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp312-cp312-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp312-cp312-win32.whl
  • Upload date:
  • Size: 204.2 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 cf2cacf0fe028b556b099f1daf1980826001844e0e0b34369a6a133566cc0e4d
MD5 d9a0577b6df4e0bec00c899b643e641b
BLAKE2b-256 b66b9111b519f8b8685af9c14abfbd13db65bf220bf11725421172c105fa8983

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75d4d16e485f13629986bb8b2f0d9d78ec648b18196fc71bd7d529447c692fd2
MD5 96850cf5a029e8ce5011d7666fe7f69f
BLAKE2b-256 0e8072664a862f915513eb90deb17a81714f82ce6a352612773cbc5cfecf9b28

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7d96248d0ba051f32559d0060870f869d384c3c1c75b3e8fb116d0a025be77aa
MD5 b73474f52d8cefbab3031528ffe5b2a4
BLAKE2b-256 51a562192e355c85a8c53ec44fd92651ab06041507db704c41983a1804ab3a75

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 604afb9904ef7f713889f83090644e0f7f6347d10211b7d05c40d1dafdc45db8
MD5 b422e3a42b7b73b55dc29579da314643
BLAKE2b-256 d6c2a676fa5d31c71fba2960840aa864c5c8637c068f06baeee7ecf48c936649

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 213.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 abe24a578f9be32d61f55a836ca0e4c23cbbed8e3238c4855562383837b84b29
MD5 bce18e9e56c5e36f71ecb11ecab5b893
BLAKE2b-256 734909d135639360c6c60df4734e577332dd823796bccbdc001c570de7e6d990

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp311-cp311-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp311-cp311-win32.whl
  • Upload date:
  • Size: 203.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 92103f1074cc432ebcb72d8ff07d55ad91bb3d8d0ebb45e4eb69c9dc6801224c
MD5 f145bd3bdd0188f75cd8030a6c71bfb5
BLAKE2b-256 44ed21b8475629cd1d14d24abde83b404cff70a8e0e55fcba03cbaab9ffb6e52

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1568c64d3704f1d67172f1fce859222df9f443584a938858eb25517e6a0b77b6
MD5 bc4f4d144015ed6b6195f0f08875f84f
BLAKE2b-256 578612d37691d533a9bf6bb4a6b97e5a789363ce6d726d254cf54086550e62d9

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 eacf7c6f48e6c3c8f0735b225d918aee7ad862d69c27a505dbc8e8b7f441971c
MD5 adbcb0a7642608fd7a2bd51d3c95a274
BLAKE2b-256 f0e2e49bb001cdfe2a045f69e362b05f89e8e760a7d34bda50a81a673fa99e47

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7de64c9ef26dd0a992b1d16a83e360721ed3ede611dcb78aa7f3ce8d3e169565
MD5 7221c97841b7f08ae914fc00cb26b1ab
BLAKE2b-256 27d2f4ef67aa1252e83fe6018f216c5db0d1b3352813c54dbd8526648531d0ee

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 214.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 064157be634301deff0b7211a8890391a26f9ea58e82a6e371644fb8a1b79a4f
MD5 a591c5f5be3ab9fcb67e353b6004b113
BLAKE2b-256 f62e19299051c21011edc5742a9f19deb16e8233cc80920aa25015a2b3be5274

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp310-cp310-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp310-cp310-win32.whl
  • Upload date:
  • Size: 204.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 06feda307719f359824f436965f71d6b8b795dd0eb2d83424b2dad5c8c784c40
MD5 ab9cce53be4c5da45195519edae756e5
BLAKE2b-256 079df21e887b268bc58472e60f32c30015c0184d69f722d615c44bb252dd9b82

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 865873d2fa53511a9e88a1d6053c98b6d5b7f8250cf15a3aa8fab05884bc0723
MD5 65c2a0e08544b1e18b02811621e8bea5
BLAKE2b-256 07cad583b7369bb6546072f24f0f996b3ed6732f29625b9e42b374a10bde8a03

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b208a3904b328fbf00b1f041e74ca699ecc2c6e1a1037c783a86ec994760f972
MD5 6425f5ea4be0761ef0c1ca92b7620e8c
BLAKE2b-256 8a260fa819a173c443dee722a233dad7d4a911e0fc194983399e16b88b20acf3

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 431f7986b99fb2b75a07a62d357b67892c7f2718186df891bfbc42e4886f092e
MD5 a9c756b4c0693e0ebedffda8803446eb
BLAKE2b-256 6d24dfb7577e6313f867426b0d8a1a7c08e08173f01d8d19a67cee0bcd8295f9

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 215.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f915550349d1fe3645dc875f416d1cde7659ee2725d83fd84af28a91a0556fc3
MD5 abea8d56308f01cbc5df80551e704501
BLAKE2b-256 c2af56b66ed42d3c6ae87de480c530bdf72ec7adbecb9bf519461d50746d2a46

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp39-cp39-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp39-cp39-win32.whl
  • Upload date:
  • Size: 205.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a4e96f55661cc5bcea34dc769d2b50358ed6e05567d6bb0f36a0f33c8c4e13ba
MD5 196556baaaa762c562e1326f84edfc1e
BLAKE2b-256 fadaf8a63d43c4302f590b63000f27f2d172e300f12ab14e0b3fd1bc5b3f403c

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8dc931a2b3e26273a65c212ef1d36d98b5f5a815530b1903dfba6f7b089f615c
MD5 7f9df0bf39e8ebee1ae237cb7a22ffd3
BLAKE2b-256 3ce46bcc5e3eba2e746f777af53d3c499ea7df7025ab1430e13faf2bec0844cb

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1c7edf8bdf198309956a115e5c0d692db6bf4503ca31faa5323126754a3a143a
MD5 8e95ca5068bc20a40cc3d1026aa93bdd
BLAKE2b-256 1c1a0310228809640ae40f42cb6a125dba258f691565e451ce39e2606ac9b333

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d526f19e51ca51c49e0c64238173002073b533789513a14ae07b13bddc173965
MD5 d79ca4a6d42006986c612c90baee6299
BLAKE2b-256 3c420be71efef2f3a73aa6ca68ab17b26ececdf1e2f345cd0971e46ec6275ed8

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 215.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1d0b0c5763e3fd1132bfa30733071d2177ead20889583c767344a1429ad410a0
MD5 bd9f027fd1cdeedb0a8fa9cf11bcdaa5
BLAKE2b-256 78d19271c0089b0ca9b118233498c05a1763e7413658ade88c44441150ba5d2d

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp38-cp38-win32.whl.

File metadata

  • Download URL: KDEpy-1.1.9-cp38-cp38-win32.whl
  • Upload date:
  • Size: 90.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.8

File hashes

Hashes for KDEpy-1.1.9-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7049eb1e5add8e3ccc831ff19fa1ca25e342c3eedd89a7bf0e9eb4ad0f64ae9b
MD5 42bc05854c812e4d42c3cd417ded4a59
BLAKE2b-256 1eeb0a4f6b20e9400b4a1f24a7cdb09002453e5b097a8fb265d3b6e74e34ff92

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec82aff0482653ad9abf5d11fffe073b0de8ebe98685c6dfb03c54587e2bd884
MD5 0ff89d0a35fefbec2a536decf408794d
BLAKE2b-256 66802e18f8715aa953b06b191eaa588beedef6a0e500e29e890a2892fb405988

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 360e95e4b02154e0aa16911474d66233d6df6e46252d9cdd913bedbe2a73ac6d
MD5 a02eb16bffdc2ef0bf8908efff9fcb0a
BLAKE2b-256 63ccfa5795b2ec464ef55b000c4a732cb855cf745200ef1d425712892e589523

See more details on using hashes here.

File details

Details for the file KDEpy-1.1.9-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for KDEpy-1.1.9-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 858ac2e86b46b3e1ba27349611a5e4ffbdc811df7f0cd86704787f2dd3bfaa30
MD5 9bf104b8ec395f26ba2c2c8a88e94b17
BLAKE2b-256 5de2f0dda510dec4f9f0462df0bd0cfa1c5bd209efd36ff562554217ac5cc1d4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page