Skip to main content

Python extension for computing string edit distances and similarities.

Project description

Levenshtein

Continous Integration PyPI package version Python versions Documentation GitHub license

Introduction

The Levenshtein Python C extension module contains functions for fast computation of:

  • Levenshtein (edit) distance, and edit operations
  • string similarity
  • approximate median strings, and generally string averaging
  • string sequence and set similarity

This is a fork of ztane/python-Levenshtein, since the original project is no longer actively maintained.

Requirements

  • Python 3.5 or later

Installation

pip install levenshtein

Documentation

The documentation for the current version can be found at https://maxbachmann.github.io/Levenshtein/

License

Levenshtein is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

See the file COPYING for the full text of GNU General Public License version 2.

Changelog

v0.17.0

  • Removed support for Python 3.5

v0.16.1

  • Add support for RapidFuzz v1.9.*

v0.16.0

  • Add support for Python 3.10

v0.15.0

  • Update SequenceMatcher interface to support the autojunk parameter

v0.14.0

  • Drop Python 2 support
  • Fixed free of non heap object due caused by zero offset on a heap object
  • Fixed warnings about missing type conversions
  • Fix segmentation fault in subtract_edit when incorrect input types are used
  • Fixed unchecked memory allocations
  • Implement distance/ratio/hamming/jaro/jaro_winkler using rapidfuzz instead of providing a own implementation
  • Implement Wrapper for inverse/editops/opcodes/matching_blocks/subtract_edit/apply_edit using Cython to simplify support for new Python versions

v0.13.0

  • Maintainership passed to Max Bachmann
  • use faster bitparallel implementations for distance and ratio
  • avoid string copies in distance, ratio and hamming
  • Fix usage of deprecated Unicode APIs in distance, ratio and hamming
  • Fixed incorrect window size inside Jaro and Jaro-Winkler implementation
  • Fixed incorrect exception messages
  • Removed unused functions and compiler specific hacks
  • Split the Python and C implementations to simplify building of the C library
  • Fixed multiple bugs which prevented the use as C library, since some functions only got defined when compiling for Python
  • Build and deliver python wheels for the library
  • Fixed incorrect allocation size in lev_editops_matching_blocks and lev_opcodes_matching_blocks

v0.12.1

  • Fixed handling of numerous possible wraparounds in calculating the size of memory allocations; incorrect handling of which could cause denial of service or even possible remote code execution in previous versions of the library.

v0.12.0

  • Fixed a bug in StringMatcher.StringMatcher.get_matching_blocks / extract_editops for Python 3; now allow only str editops on both Python 2 and Python 3, for simpler and working code.
  • Added documentation in the source distribution and in GIT
  • Fixed the package layout: renamed the .so/.dll to _levenshtein, and made it reside inside a package, along with the StringMatcher class.
  • Fixed spelling errors.

v0.11.2

  • Fixed a bug in setup.py: installation would fail on Python 3 if the locale did not specify UTF-8 charset (Felix Yan).

  • Added COPYING, StringMatcher.py, gendoc.sh and NEWS in MANIFEST.in, as they were missing from source distributions.

v0.11.1

  • Added Levenshtein.h to MANIFEST.in

v0.11.0

  • Python 3 support, maintainership passed to Antti Haapala

v0.10.2

  • Made python-Lehvenstein Git compatible and use setuptools for PyPi upload
  • Created HISTORY.txt and made README reST compatible

v0.10.1

  • apply_edit() broken for Unicodes was fixed (thanks to Radovan Garabik)
  • subtract_edit() function was added

v0.10.0

  • Hamming distance, Jaro similarity metric and Jaro-Winkler similarity metric were added
  • ValueErrors raised on wrong argument types were fixed to TypeErrors

v0.9.0

  • a poor-but-fast generalized median method quickmedian() was added
  • some auxiliary functions added to the C api (lev_set_median_index, lev_editops_normalize, ...)

v0.8.2

  • fixed missing `static' in the method list

v0.8.1

  • some compilation problems with non-gcc were fixed

v0.8.0

  • median_improve(), a generalized median improving function, was added
  • an arbitrary length limitation imposed on greedy median() result was removed
  • out of memory should be handled more gracefully (on systems w/o memory overcomitting)
  • the documentation now passes doctest

v0.7.0

  • fixed greedy median() for Unicode characters > U+FFFF, it's now usable with whatever integer type wchar_t happens to be
  • added missing MANIFEST
  • renamed exported C functions, all public names now have lev_, LEV_ or Lev prefix; defined lev_byte, lev_wchar, and otherwise santinized the (still unstable) C interface
  • added edit-ops group of functions, with two interfaces: native, useful for string averaging, and difflib-like for interoperability
  • added an example SequenceMatcher-like class StringMatcher

v0.6.0

  • a segfault in seqratio()/setratio() on invalid input has been fixed to an exception
  • optimized ratio() and distance() (about 20%)
  • Levenshtein.h header file was added to make it easier to actually use it as a C library

v0.5.0

  • a segfault in setratio() was fixed
  • median() handles all empty strings situation more gracefully

v0.4.0

  • new functions seqratio() and setratio() computing similarity between string sequences and sets
  • Levenshtein optimizations (affects all routines except median())
  • all Sequence objects are accepted, not just Lists

v0.3.0

  • setmedian() finding set median was added
  • median() initial overhead for Unicodes was reduced

v0.2.0

  • ratio() and distance() now accept both Strings and Unicodes
  • removed uratio() and udistance()
  • Levenshtein.c is now compilable as a C library (with -DNO_PYTHON)
  • a median() function finding approximate weighted median of a string set was added

v0.1.0

  • Inital release

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Levenshtein-0.17.0.tar.gz (105.0 kB view details)

Uploaded Source

Built Distributions

Levenshtein-0.17.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (167.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

Levenshtein-0.17.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (89.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

Levenshtein-0.17.0-cp310-cp310-win_amd64.whl (71.1 kB view details)

Uploaded CPython 3.10 Windows x86-64

Levenshtein-0.17.0-cp310-cp310-win32.whl (63.5 kB view details)

Uploaded CPython 3.10 Windows x86

Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (107.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (126.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (102.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

Levenshtein-0.17.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (109.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Levenshtein-0.17.0-cp310-cp310-macosx_10_9_x86_64.whl (92.7 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

Levenshtein-0.17.0-cp39-cp39-win_amd64.whl (71.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

Levenshtein-0.17.0-cp39-cp39-win32.whl (63.5 kB view details)

Uploaded CPython 3.9 Windows x86

Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (107.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (126.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (102.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

Levenshtein-0.17.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (109.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Levenshtein-0.17.0-cp39-cp39-macosx_10_9_x86_64.whl (92.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

Levenshtein-0.17.0-cp38-cp38-win_amd64.whl (71.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

Levenshtein-0.17.0-cp38-cp38-win32.whl (63.5 kB view details)

Uploaded CPython 3.8 Windows x86

Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (108.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (127.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (103.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

Levenshtein-0.17.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (110.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Levenshtein-0.17.0-cp38-cp38-macosx_10_9_x86_64.whl (91.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

Levenshtein-0.17.0-cp37-cp37m-win_amd64.whl (70.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

Levenshtein-0.17.0-cp37-cp37m-win32.whl (63.2 kB view details)

Uploaded CPython 3.7m Windows x86

Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (110.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (107.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (128.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (103.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

Levenshtein-0.17.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (111.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Levenshtein-0.17.0-cp37-cp37m-macosx_10_9_x86_64.whl (91.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

Levenshtein-0.17.0-cp36-cp36m-win_amd64.whl (69.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

Levenshtein-0.17.0-cp36-cp36m-win32.whl (61.8 kB view details)

Uploaded CPython 3.6m Windows x86

Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl (103.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ s390x

Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (123.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (100.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

Levenshtein-0.17.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (107.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

Levenshtein-0.17.0-cp36-cp36m-macosx_10_9_x86_64.whl (89.6 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file Levenshtein-0.17.0.tar.gz.

File metadata

  • Download URL: Levenshtein-0.17.0.tar.gz
  • Upload date:
  • Size: 105.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0.tar.gz
Algorithm Hash digest
SHA256 b520f1f0049c361bbeaace1ae22c022b281c0e6205bac43c1818b65e5a4da924
MD5 c72ef6512ad9688889fcde17d1de9f66
BLAKE2b-256 b914df1f2b27e7389ffbb3cf8ab750b9ae781defd4605d660bb1970267d4d8af

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 167.3 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2cf3dd5b5abb34b5a232955c87dd9c6440f07083f7061d9850d4b935b5fe6d32
MD5 f5ca755192e99f15ffd564839fdc991a
BLAKE2b-256 10eba9b88aec9505b9122e4b3fb48a9bd2d20645612efbe7e085ba6538f7a71f

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 89.4 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b5b0b0eb4933b289556f2b6e623c8e2915befd98d163201838c0799dcd2e809
MD5 3a6d1ad605be3ddcf2ae5352eb00e477
BLAKE2b-256 917f389e2b9434950b22ad51c1962e094a67163438925ebb2bd12b1c2f24df37

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 71.1 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7ea8858a75654c16a72a0afd07e507d1ac12be7c2c4a253d6878336f75da4ddf
MD5 1344cf787b968aa2e79c26c209a5d971
BLAKE2b-256 7b6b86a7ae746656a4909a210b354b53f95cc03f35308f93142228319a7f41ad

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 63.5 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 571a8d1184b3ccfb5344ee4d4044d2ebc5319db6f2a213f05bb62a877a27f1ad
MD5 cdc75887a90d16f39290c46a5cb144f8
BLAKE2b-256 9ee167be9495663626343d0fa570ba49894033c968d8450e5fb09b15c309ad5e

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5aac8bac3b5b894c5259dea0ae1751cb05a70874213866454476fafc142a8061
MD5 bc64eef85a20844283fe45c6c52223b8
BLAKE2b-256 8304f4ded0139841a4d7eb883e179ac1cb2381e201d6bcb7dad764e670cf2793

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b6a08997ad7ec875780311cb6f85e34d867d54a601af20ffb4cce41b3fc8c47c
MD5 afe99d3488e79d1f96cf31bae74516d1
BLAKE2b-256 721a5b8763d5256a031675db209c4cc5d4e9b6e54f2551985783bed6b2b143a2

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 16bf459d0eb4288e5511275d00673006f4b64fdad8451fb76bd4150de4cf39ba
MD5 b462d6f67efb132fd681c9a4e8d06490
BLAKE2b-256 d30e0e3ab995efac72257142ec47786c63e8fb7199696d84e603535df06ed628

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8da9500784ae7092a1a157dfa79cb0c58b555717c2d505be7dc70c568aeefa0a
MD5 328f5a128351c996a9c43d3f9aad9b44
BLAKE2b-256 8536691319d3c723723253398eb501632bb3b6d6d006e111d37fa93799a78def

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e64c7c42add5b05b4bdacdcb3ca582c3d66491ed086c0459470b335092669fcc
MD5 772143709467c5c7684545fa02873463
BLAKE2b-256 1eeb1712e86cef3bcb75e8dcecdbfc1c57cac6ddf479a5047c3cad364a381916

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 92.7 kB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 021e3d9f2cd414666c135f608176473d432285b032d0f6ae5e35253940914cce
MD5 797d8cc277f726cf4c96ebb9fe150f60
BLAKE2b-256 31a6c2e2210ebc18396ef1853cad71a4130e1a5934e742d4b04d7a50b4efa9ba

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 71.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3330ea5e1e527be9fdad136f44cd2dce2c9a7f63c76d83ce205d0600e48dc062
MD5 db1272f34d0a176ffde29f418b050daf
BLAKE2b-256 da5d03ef4c7b585936242d530e09800e1f6e0213c91c10d2f3cb760020f51553

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 63.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 be44fdaedbd558da5147a1b5d7d668f86980ed1ff81c654cf949723414f25a95
MD5 396cd53eeae9f658d4c04fca4dd7139a
BLAKE2b-256 4ba4c26276e7035ba419aaa388794a78d2865260a9883df73884969476ec09ab

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ae6c73ef9c5d3de5b8518a1bea726b8814ad962195df3fb28d47970bc1ad6340
MD5 59d7badd48fb758e8b367239b9591fe8
BLAKE2b-256 4b0483fa6c80c2a1a878f0d1481cda0f56a2ca6ad041e12bbbbc7f633cfa7ea3

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a3b2381d410a2e59449b98e19332d66b236607948369562d053494d40017ff3a
MD5 7f1816cc91578f775bb05701ef4c3751
BLAKE2b-256 eaa9223959df3a5d63edf0cb08b44539af1e09bc4e499d139f5bb26bdb32d376

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 22221451859784b19885827444c3f6a550018a9e10d868f2bc71a0cebbb2ef6c
MD5 5cce4b709370973b591dea208a6a5228
BLAKE2b-256 10fb299968d174970d410757fe1a85d3ca60b913e81b11604d27b1cdb7a3efdd

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3f176def04aee968528891794aedf27e73c7c96fe302127e4eae8b3e7a9c4682
MD5 1bd81bd06bf336e0dcb08a4a75edefd6
BLAKE2b-256 c32dbf6147a271f2d94f952b28409cfa40b40d79fae43a6e9cb79b062de6bfea

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7a810135981269678a2e369f4ec21273e3252152b05e6986023e556dbf09f6d6
MD5 4663f7d0e27bd10b20f6c62c456f55c8
BLAKE2b-256 88cdcb28b34b7ecc2d28b793f4f3683211924b9bd992095807d870806fc0261b

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 92.8 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9f8c187a658b8bf36683d77099650a51f99a424acb9861330bfdcf796e97c9b3
MD5 ab6e9a31621c15348323b9c7b9376928
BLAKE2b-256 49efc60c0c91ba7348888542d50798ee4591b9ce48096ccafe108cde3b0e769b

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 71.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9b6fab6b94ddc170a9ce76114dfa0c452c9cc93de8d12a080ca69ec575db9893
MD5 893a38967635cec30e583989e36a1e56
BLAKE2b-256 aa583394013a168a5a167f61037ea5c1b86f97b1854a5e354396f1697d7592bc

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 63.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 55769333a15baa2d8729e4b4e59374c880f64a08c1b6ae83acb6c2427f86454c
MD5 48c25892bbeacff973021fd75fe17cd9
BLAKE2b-256 9c9eaa675c3babef297202c82587788fbcd930627c2cc3ebfe63f2fb7b95cae3

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d0373507a8da2ee20af3e2ccd8977573d4de355b1dba5dc4df78072d34f15167
MD5 08e7794df7cfc6584889ab6af38ecb91
BLAKE2b-256 f6f1f6c9a673e8dc981940e140eb58f96d4216b6ad5d781a6313fb2ee36ce8d3

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 429b2c570af423fde146bcf34e262ebf98ff6e4508a7f54a339d31f20abd786a
MD5 b1b1adc93d2acc0c9a4c742c289e1887
BLAKE2b-256 0cb8d0f1a242ed4a91d0241cc2c149475039eed28b1d28f1b30fb3c435f02457

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ea3975ba7a5484c2b10e60ea991e4466cb8bf8a761ba04258ef55e6712e79855
MD5 4b43b711c691396943fa6d671f63568e
BLAKE2b-256 67c529fa109ffbf1f5392c601ee7cc62f4c42501f0e93f1b6012574a156ba611

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45141289333ed9a6e515aa413f342d3e61b3bbc241de2f1952b4a1106b810eda
MD5 06dfb894c29962386a175a1afb4d7f92
BLAKE2b-256 8ad9a3e7393d678d9e4a3d341a1a587220ef6c789b53143481aea7b82a2f7612

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 fd4a14e14fdeba1ee5ea630f1da8ac0872e4dd983708a7c697d2846db9fe67aa
MD5 e84c084279fcd8fc4efbec360a7aebcb
BLAKE2b-256 031ab48794f644af68085e2c5fd9ffa4892756e4c87382571c6c557195840ded

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 91.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b6c6e279396f26528dec2d228ceafc23486e6cc45268ee94ba650947384ebfdf
MD5 cff60b6a0601ee786090ff09794519ee
BLAKE2b-256 ca731e12894e8d128f519c5b79896d8ffd26a49ec14f33f17a472a6d59b0b157

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 70.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0aa7b8004d1f4c0714135686e151579090a605faae5b35a0ad3e466120f6dcaa
MD5 e7d92ca2aaea7a9a55a1433c1afaee97
BLAKE2b-256 ab64fc85b6aedcc7266323a646f61b9aba432d04a120d5a78a0ea473659d219a

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 63.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4a1f702ffe0293d1ab284dcd354d68fe4bea55f95f2c66c445d68e49c3bb307c
MD5 4201e35e1113bcd70ac8d5af67c89c13
BLAKE2b-256 5806c84eb80d271fe9b05d7502e45deeb403f5099330b57537e3635b234de374

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcd5d5873e777403e8e6916e152100c27cad8aea5c4fe105f4981cec0453ac04
MD5 80584d5e469c897c46c245bfb6cf25da
BLAKE2b-256 77632f4903528bb2334a3ecf8f2c897d98c4d5fcc066c1eed3aefec1b9ca7269

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4bbaae7ea964b12824d3e6119911535045f99b5c0e790401f70ab8b218dce920
MD5 59d3ae2a63d643eb5613ff640ce42339
BLAKE2b-256 a97b58940711cab48cb089b6e25b724cacf5d21fd8f52fc557c8f23a08e22a68

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 562251c98ffead7bc846b43859f9fb799692092d62bbe67db0f8d87b8e661cf8
MD5 8b70024881cd3a1dd48db147beb06ecc
BLAKE2b-256 2705bbbe7fec7ad878b7a1e15b4e87467c4d3e575af222d247e7d9747fe6e1bc

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 29199ab14ec1e0e1036b57464a8835bc628c8bb283adf44ad5bba2c0d5956dc4
MD5 6fa420af01b79b6156dca4b5e7dbb86f
BLAKE2b-256 e726e8b3d288461d7a331b19125ddadb434f28bc492c134c70975b8c236d2dfc

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 78283992c85645c5d22f4d2973e4a8a08dd376bfdc7b9b7041bc546b36d5808c
MD5 7f24af869abe149314e4d682df9c6af5
BLAKE2b-256 0f3695bb3a8bbf2169d048e75f35bd6e86017fcfada4a91124cb21e5be007968

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 91.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8ab529453a9625b3f53b4ff106044e3ccc31c160ddb4e8e3bcc0062ea5e6152
MD5 5f1f461356ec0a77e2ac4d022cfdc4f2
BLAKE2b-256 77ca9cc5123ae4e014994af122dcffc76e5dcfc8c2a34af7871df81f03098d5e

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 69.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c5c508abef164d1a5a4e53f3452d529006cc30c55a2cc5f94bfff2b8bf3bc819
MD5 94d7d389b84c0901f9a872fe3f7ad66c
BLAKE2b-256 aeaff6d8110626abbf3dc04a189541c7ddddd051901943896816854d811025f8

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 61.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b49838fe76689c79dbdb8eacc675c14ebc34eb487842cf3a05faf791f89bc534
MD5 afe6afe0a48e3afd3955e2512368a457
BLAKE2b-256 cd7d525845888c58a3cf0da0ba76ac9b3ed55d7234a320ca5f4b0d28b18c00dd

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca69efe58a62b6d65e01cc886790124212f2e8e5243ace08b730c01129742ba0
MD5 bf8115fc1945f72bf6a7ef73079f2474
BLAKE2b-256 5d133f70f6b72e4e78cf4f2f43cc29ce4c220123668577eff5e5163cd78142c5

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7df9c3187b9922fe7d10583a05bff7965e543c3f5541b93df553589cd25e5526
MD5 15ca6842bf704910c3c141ccb1a2503b
BLAKE2b-256 27bd12ce94eb52b4f9056e1908c6c93efbb639ff9c9670b897682e7583c14895

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d1d7f0f44635dc6fb2ed89e77cce895fa1b08740a54647cf624082cb18bc7562
MD5 f30460a66445a7e40ba5b68d5cbf7b18
BLAKE2b-256 6ee278fde0caa55470f3e7b7a855813ea8e383c31b75feed2368c7abf9d1e175

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1604d79a09e0162c8d30e39cebf8f04aac5899179dad4367062fb5bca07be016
MD5 6b7944afbda62845a807c8b3e6f2c10e
BLAKE2b-256 53b372715b085b4615bd6ed2f82bf433db2ca9403c42f3c3e2427fd36fd0d93e

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for Levenshtein-0.17.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 58b40ef2133df25ad13a1fd0a02015936bb0f95fb494279a2999f833c9908933
MD5 b810662a365533db0ccdaa112b519990
BLAKE2b-256 e6ee2dd4484d823cf8c5d60ad631d1db7ebf8ee07ffde8f58fcb439a1898ccf5

See more details on using hashes here.

File details

Details for the file Levenshtein-0.17.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: Levenshtein-0.17.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 89.6 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10

File hashes

Hashes for Levenshtein-0.17.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 af18a04e8fd63a3190b2b7bd27fb0c8cd763f4380dd6d6242cff38bf6e035b55
MD5 666690d16a87673eaf965639fe43c421
BLAKE2b-256 5096773cbf1158f9b588e26e7c857dfa878d3a23d9c9df1f277930f994321356

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page