Skip to main content

NEURON Modeling Language Source-to-Source Compiler Framework

Project description

The NMODL Framework

Build Status Build Status codecov CII Best Practices

The NMODL Framework is a code generation engine for NEURON MODeling Language (NMODL). It is designed with modern compiler and code generation techniques to:

  • Provide modular tools for parsing, analysing and transforming NMODL
  • Provide easy to use, high level Python API
  • Generate optimised code for modern compute architectures including CPUs, GPUs
  • Flexibility to implement new simulator backends
  • Support for full NMODL specification

About NMODL

Simulators like NEURON use NMODL as a domain specific language (DSL) to describe a wide range of membrane and intracellular submodels. Here is an example of exponential synapse specified in NMODL:

NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}
UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}
PARAMETER {
    tau = 0.1 (ms) <1e-9,1e9>
    e = 0 (mV)
}
ASSIGNED {
    v (mV)
    i (nA)
}
STATE {
    g (uS)
}
INITIAL {
    g = 0
}
BREAKPOINT {
    SOLVE state METHOD cnexp
    i = g*(v - e)
}
DERIVATIVE state {
    g' = -g/tau
}
NET_RECEIVE(weight (uS)) {
    g = g + weight
}

Installation

See INSTALL.md for detailed instructions to build the NMODL from source.

Try NMODL with Docker

To quickly test the NMODL Framework's analysis capabilities we provide a docker image, which includes the NMODL Framework python library and a fully functional Jupyter notebook environment. After installing docker and docker-compose you can pull and run the NMODL image from your terminal.

To try Python interface directly from CLI, you can run docker image as:

docker run -it --entrypoint=/bin/sh bluebrain/nmodl

And try NMODL Python API discussed later in this README as:

$ python3
Python 3.6.8 (default, Apr  8 2019, 18:17:52)
>>> from nmodl import dsl
>>> import os
>>> examples = dsl.list_examples()
>>> nmodl_string = dsl.load_example(examples[-1])
...

To try Jupyter notebooks you can download docker compose file and run it as:

wget "https://raw.githubusercontent.com/BlueBrain/nmodl/master/docker/docker-compose.yml"
DUID=$(id -u) DGID=$(id -g) HOSTNAME=$(hostname) docker-compose up

If all goes well you should see at the end status messages similar to these:

[I 09:49:53.923 NotebookApp] The Jupyter Notebook is running at:
[I 09:49:53.923 NotebookApp] http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935
[I 09:49:53.923 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    To access the notebook, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
    Or copy and paste one of these URLs:
        http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935

Based on the example above you should then open your browser and navigate to the URL http://127.0.0.1:8888/?token=a7902983bad430a11935.

You can open and run all example notebooks provided in the examples folder. You can also create new notebooks in my_notebooks, which will be stored in a subfolder notebooks at your current working directory.

Using the Python API

Once the NMODL Framework is installed, you can use the Python parsing API to load NMOD file as:

from nmodl import dsl

examples = dsl.list_examples() 
nmodl_string = dsl.load_example(examples[-1])
driver = dsl.NmodlDriver()
modast = driver.parse_string(nmodl_string)

The parse_file API returns Abstract Syntax Tree (AST) representation of input NMODL file. One can look at the AST by converting to JSON form as:

>>> print (dsl.to_json(modast))
{
  "Program": [
    {
      "NeuronBlock": [
        {
          "StatementBlock": [
            {
              "Suffix": [
                {
                  "Name": [
                    {
                      "String": [
                        {
                          "name": "POINT_PROCESS"
                        }
                    ...

Every key in the JSON form represent a node in the AST. You can also use visualization API to look at the details of AST as:

from nmodl import ast
ast.view(modast)

which will open AST view in web browser:

ast_viz

The central Program node represents the whole MOD file and each of it's children represent the block in the input NMODL file. Note that this requires X-forwarding if you are using Docker image.

Once the AST is created, one can use exisiting visitors to perform various analysis/optimisations. One can also easily write his own custom visitor using Python Visitor API. See Python API tutorial for details.

NMODL Frameowrk also allows to transform AST representation back to NMODL form as:

>>> print (dsl.to_nmodl(modast))
NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}

PARAMETER {
    tau = 0.1 (ms) <1e-09,1000000000>
    e = 0 (mV)
}
...

High Level Analysis and Code Generation

The NMODL Framework provides rich model introspection and analysis capabilities using various visitors. Here is an example of theoretical performance characterisation of channels and synapses from rat neocortical column microcircuit published in 2015:

nmodl-perf-stats

To understand how you can write your own introspection and analysis tool, see this tutorial.

Once analysis and optimization passes are performed, the NMODL Framework can generate optimised code for modern compute architectures including CPUs (Intel, AMD, ARM) and GPUs (NVIDIA, AMD) platforms. For example, C++, OpenACC and OpenMP backends are implemented and one can choose these backends on command line as:

$ nmodl expsyn.mod sympy --analytic

To know more about code generation backends, see here. NMODL Framework provides number of options (for code generation, optimization passes and ODE solver) which can be listed as:

$ nmodl -H
NMODL : Source-to-Source Code Generation Framework [version]
Usage: /path/<>/nmodl [OPTIONS] file... [SUBCOMMAND]

Positionals:
  file TEXT:FILE ... REQUIRED           One or more MOD files to process

Options:
  -h,--help                             Print this help message and exit
  -H,--help-all                         Print this help message including all sub-commands
  --verbose=info                        Verbose logger output (trace, debug, info, warning, error, critical, off)
  -o,--output TEXT=.                    Directory for backend code output
  --scratch TEXT=tmp                    Directory for intermediate code output
  --units TEXT=/path/<>/nrnunits.lib
                                        Directory of units lib file

Subcommands:
host
  HOST/CPU code backends
  Options:
    --c                                   C/C++ backend (true)

acc
  Accelerator code backends
  Options:
    --oacc                                C/C++ backend with OpenACC (false)

sympy
  SymPy based analysis and optimizations
  Options:
    --analytic                            Solve ODEs using SymPy analytic integration (false)
    --pade                                Pade approximation in SymPy analytic integration (false)
    --cse                                 CSE (Common Subexpression Elimination) in SymPy analytic integration (false)
    --conductance                         Add CONDUCTANCE keyword in BREAKPOINT (false)

passes
  Analyse/Optimization passes
  Options:
    --inline                              Perform inlining at NMODL level (false)
    --unroll                              Perform loop unroll at NMODL level (false)
    --const-folding                       Perform constant folding at NMODL level (false)
    --localize                            Convert RANGE variables to LOCAL (false)
    --global-to-range                     Convert GLOBAL variables to RANGE (false)
    --localize-verbatim                   Convert RANGE variables to LOCAL even if verbatim block exist (false)
    --local-rename                        Rename LOCAL variable if variable of same name exist in global scope (false)
    --verbatim-inline                     Inline even if verbatim block exist (false)
    --verbatim-rename                     Rename variables in verbatim block (true)
    --json-ast                            Write AST to JSON file (false)
    --nmodl-ast                           Write AST to NMODL file (false)
    --json-perf                           Write performance statistics to JSON file (false)
    --show-symtab                         Write symbol table to stdout (false)

codegen
  Code generation options
  Options:
    --layout TEXT:{aos,soa}=soa           Memory layout for code generation
    --datatype TEXT:{float,double}=soa    Data type for floating point variables
    --force                               Force code generation even if there is any incompatibility
    --only-check-compatibility            Check compatibility and return without generating code
    --opt-ionvar-copy                     Optimize copies of ion variables (false)

Documentation

We are working on user documentation, you can find current drafts of :

Citation

If you would like to know more about the the NMODL Framework, see following paper:

  • Pramod Kumbhar, Omar Awile, Liam Keegan, Jorge Alonso, James King, Michael Hines and Felix Schürmann. 2019. An optimizing multi-platform source-to-source compiler framework for the NEURON MODeling Language. In Eprint : arXiv:1905.02241

Support / Contribuition

If you see any issue, feel free to raise a ticket. If you would like to improve this framework, see open issues and contribution guidelines.

Examples / Benchmarks

The benchmarks used to test the performance and parsing capabilities of NMODL Framework are currently being migrated to GitHub. These benchmarks will be published soon in following repositories:

Funding & Acknowledgment

The development of this software was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government's ETH Board of the Swiss Federal Institutes of Technology. In addition, the development was supported by funding from the National Institutes of Health (NIH) under the Grant Number R01NS11613 (Yale University) and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

Copyright © 2017-2022 Blue Brain Project/EPFL

Project details


Release history Release notifications | RSS feed

This version

0.6

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

NMODL_nightly-0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

NMODL_nightly-0.6-cp311-cp311-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

NMODL_nightly-0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

NMODL_nightly-0.6-cp310-cp310-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

NMODL_nightly-0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

NMODL_nightly-0.6-cp39-cp39-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

NMODL_nightly-0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

NMODL_nightly-0.6-cp38-cp38-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

NMODL_nightly-0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

NMODL_nightly-0.6-cp37-cp37m-macosx_10_15_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file NMODL_nightly-0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 219382b4956f7f10a3aca3c9f0e33654529ae8b067dc7ff538db38174e0d2971
MD5 7b9a58e2c393d2548d64b622f5d6650d
BLAKE2b-256 662268efa2e57a17f34ff436bacbce810d298eb13e0854c9a04ec54a1ee8906b

See more details on using hashes here.

Provenance

File details

Details for the file NMODL_nightly-0.6-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5d223d7cee926d75be207befcad354a000f761e640a707ecfd2b3359217b7b64
MD5 d2935bb3fd6da4dc54d5d0664428c56d
BLAKE2b-256 a9ed2564da7683bf5abcb8346cf31900c0613beca29709b2816ab7b85cadf6ac

See more details on using hashes here.

Provenance

File details

Details for the file NMODL_nightly-0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d550654ddbe7ae321dd0b75fea8565547b56a8c76d998c4d12da45a73319947d
MD5 a66853582537cf60ef0386e238a3cc59
BLAKE2b-256 cb79311e08da1a6889ebb8545231e513d29a7f1b0b6ae6a602efb023ec921e6e

See more details on using hashes here.

Provenance

File details

Details for the file NMODL_nightly-0.6-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 051d4e9ac82bf1e87cd005922c14f055a7705c77c588f6621967ce560dc52919
MD5 bb304d5bbf95e28df19ae783513b8166
BLAKE2b-256 c99ea7fbde1554de41f70c183e5bfcffdfa9abeea7241bbcb291977d910709a2

See more details on using hashes here.

Provenance

File details

Details for the file NMODL_nightly-0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a01748004500bbcfd7ac9a198bf93d6265f735fff6c319130b376cd67b021be2
MD5 937d4dad2671da850182265033b18f0f
BLAKE2b-256 c404953d99f9f306f7d66e3f3627b575ee711287d079ae650457957a82bd1762

See more details on using hashes here.

Provenance

File details

Details for the file NMODL_nightly-0.6-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3460a23cda01dfb480483daef63d275b144012b6f1fa5d5c350a7c975ad66000
MD5 cd3d5b06e21d14cbd3ebfda848923b86
BLAKE2b-256 cff88325221e20f72c3d67b65a901d451f0646c015853e2a96777584428e8ce0

See more details on using hashes here.

Provenance

File details

Details for the file NMODL_nightly-0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 314dce3fb10971d700d46e77168f62b33d0b11084f747ecd7a41d0842920b9e2
MD5 aeaec5def5b1e5ce41f21b45dd3b4bce
BLAKE2b-256 63d1807bda9d6326a3f5f3532afc233c4b6062c2165afc8c0ec437fd916d01b0

See more details on using hashes here.

Provenance

File details

Details for the file NMODL_nightly-0.6-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 ea97eba083a6cc0412647b08ec55220cf2d8345d0dd8d784508ae7b4e1a16354
MD5 88fefae9108ccd8a4b6a3e44088e4c5a
BLAKE2b-256 cd1c269b1b7f9bc24acf3e3cc21dcc2c0b2c06d6e3597ecc3c07c194da00bb2e

See more details on using hashes here.

Provenance

File details

Details for the file NMODL_nightly-0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63eda66c6a44d534322e510011fb21ba770edfa18863fd14c2903f6bc76dca45
MD5 b691de082c796fed13b1d6fe8fa9fd20
BLAKE2b-256 0e2cacdd5f1ede8480656218b3dd2a56d4f9c5681df2946326d872e24fda91c0

See more details on using hashes here.

Provenance

File details

Details for the file NMODL_nightly-0.6-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for NMODL_nightly-0.6-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6e11c33e426cc854304b21a9fb18692ca3d869ee32140de0d29ddf0ff5943c07
MD5 d15e5dd65b8d2a04265a5914fdb2ca2b
BLAKE2b-256 47960199ac9d60031a6ddafc11a7aee458ba98c561f24722ea8c37b921726385

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page