Skip to main content

NEURON Modeling Language Source-to-Source Compiler Framework

Project description

github workflow Build Status codecov CII Best Practices

The NMODL Framework is a code generation engine for NEURON MODeling Language (NMODL). It is designed with modern compiler and code generation techniques to:

  • Provide modular tools for parsing, analysing and transforming NMODL

  • Provide easy to use, high level Python API

  • Generate optimised code for modern compute architectures including CPUs, GPUs

  • Flexibility to implement new simulator backends

  • Support for full NMODL specification

About NMODL

Simulators like NEURON use NMODL as a domain specific language (DSL) to describe a wide range of membrane and intracellular submodels. Here is an example of exponential synapse specified in NMODL:

NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}
UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}
PARAMETER {
    tau = 0.1 (ms) <1e-9,1e9>
    e = 0 (mV)
}
ASSIGNED {
    v (mV)
    i (nA)
}
STATE {
    g (uS)
}
INITIAL {
    g = 0
}
BREAKPOINT {
    SOLVE state METHOD cnexp
    i = g*(v - e)
}
DERIVATIVE state {
    g' = -g/tau
}
NET_RECEIVE(weight (uS)) {
    g = g + weight
}

Installation

See INSTALL.rst for detailed instructions to build the NMODL from source.

Try NMODL with Docker

To quickly test the NMODL Framework’s analysis capabilities we provide a docker image, which includes the NMODL Framework python library and a fully functional Jupyter notebook environment. After installing docker and docker-compose you can pull and run the NMODL image from your terminal.

To try Python interface directly from CLI, you can run docker image as:

docker run -it --entrypoint=/bin/sh bluebrain/nmodl

And try NMODL Python API discussed later in this README as:

$ python3
Python 3.6.8 (default, Apr  8 2019, 18:17:52)
>>> from nmodl import dsl
>>> import os
>>> examples = dsl.list_examples()
>>> nmodl_string = dsl.load_example(examples[-1])
...

To try Jupyter notebooks you can download docker compose file and run it as:

wget "https://raw.githubusercontent.com/BlueBrain/nmodl/master/docker/docker-compose.yml"
DUID=$(id -u) DGID=$(id -g) HOSTNAME=$(hostname) docker-compose up

If all goes well you should see at the end status messages similar to these:

[I 09:49:53.923 NotebookApp] The Jupyter Notebook is running at:
[I 09:49:53.923 NotebookApp] http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935
[I 09:49:53.923 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    To access the notebook, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
    Or copy and paste one of these URLs:
        http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935

Based on the example above you should then open your browser and navigate to the URL http://127.0.0.1:8888/?token=a7902983bad430a11935.

You can open and run all example notebooks provided in the examples folder. You can also create new notebooks in my_notebooks, which will be stored in a subfolder notebooks at your current working directory.

Using the Python API

Once the NMODL Framework is installed, you can use the Python parsing API to load NMOD file as:

from nmodl import dsl

examples = dsl.list_examples()
nmodl_string = dsl.load_example(examples[-1])
driver = dsl.NmodlDriver()
modast = driver.parse_string(nmodl_string)

The parse_file API returns Abstract Syntax Tree (AST) representation of input NMODL file. One can look at the AST by converting to JSON form as:

>>> print (dsl.to_json(modast))
{
  "Program": [
    {
      "NeuronBlock": [
        {
          "StatementBlock": [
            {
              "Suffix": [
                {
                  "Name": [
                    {
                      "String": [
                        {
                          "name": "POINT_PROCESS"
                        }
                    ...

Every key in the JSON form represent a node in the AST. You can also use visualization API to look at the details of AST as:

from nmodl import ast
ast.view(modast)

which will open AST view in web browser:

ast_viz

Vizualisation of the AST in the NMODL Framework

The central Program node represents the whole MOD file and each of it’s children represent the block in the input NMODL file. Note that this requires X-forwarding if you are using the Docker image.

Once the AST is created, one can use exisiting visitors to perform various analysis/optimisations. One can also easily write his own custom visitor using Python Visitor API. See Python API tutorial for details.

The NMODL Framework also allows us to transform the AST representation back to NMODL form as:

>>> print (dsl.to_nmodl(modast))
NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}

PARAMETER {
    tau = 0.1 (ms) <1e-09,1000000000>
    e = 0 (mV)
}
...

High Level Analysis and Code Generation

The NMODL Framework provides rich model introspection and analysis capabilities using various visitors. Here is an example of theoretical performance characterisation of channels and synapses from rat neocortical column microcircuit published in 2015:

nmodl-perf-stats

Performance results of the NMODL Framework

To understand how you can write your own introspection and analysis tool, see this tutorial.

Once analysis and optimization passes are performed, the NMODL Framework can generate optimised code for modern compute architectures including CPUs (Intel, AMD, ARM) and GPUs (NVIDIA, AMD) platforms. For example, C++, OpenACC and OpenMP backends are implemented and one can choose these backends on command line as:

$ nmodl expsyn.mod sympy --analytic

To know more about code generation backends, see here. NMODL Framework provides number of options (for code generation, optimization passes and ODE solver) which can be listed as:

$ nmodl -H
NMODL : Source-to-Source Code Generation Framework [version]
Usage: /path/<>/nmodl [OPTIONS] file... [SUBCOMMAND]

Positionals:
  file TEXT:FILE ... REQUIRED           One or more MOD files to process

Options:
  -h,--help                             Print this help message and exit
  -H,--help-all                         Print this help message including all sub-commands
  --verbose=info                        Verbose logger output (trace, debug, info, warning, error, critical, off)
  -o,--output TEXT=.                    Directory for backend code output
  --scratch TEXT=tmp                    Directory for intermediate code output
  --units TEXT=/path/<>/nrnunits.lib
                                        Directory of units lib file

Subcommands:
host
  HOST/CPU code backends
  Options:
    --c                                   C/C++ backend (true)

acc
  Accelerator code backends
  Options:
    --oacc                                C/C++ backend with OpenACC (false)

sympy
  SymPy based analysis and optimizations
  Options:
    --analytic                            Solve ODEs using SymPy analytic integration (false)
    --pade                                Pade approximation in SymPy analytic integration (false)
    --cse                                 CSE (Common Subexpression Elimination) in SymPy analytic integration (false)
    --conductance                         Add CONDUCTANCE keyword in BREAKPOINT (false)

passes
  Analyse/Optimization passes
  Options:
    --inline                              Perform inlining at NMODL level (false)
    --unroll                              Perform loop unroll at NMODL level (false)
    --const-folding                       Perform constant folding at NMODL level (false)
    --localize                            Convert RANGE variables to LOCAL (false)
    --global-to-range                     Convert GLOBAL variables to RANGE (false)
    --localize-verbatim                   Convert RANGE variables to LOCAL even if verbatim block exist (false)
    --local-rename                        Rename LOCAL variable if variable of same name exist in global scope (false)
    --verbatim-inline                     Inline even if verbatim block exist (false)
    --verbatim-rename                     Rename variables in verbatim block (true)
    --json-ast                            Write AST to JSON file (false)
    --nmodl-ast                           Write AST to NMODL file (false)
    --json-perf                           Write performance statistics to JSON file (false)
    --show-symtab                         Write symbol table to stdout (false)

codegen
  Code generation options
  Options:
    --layout TEXT:{aos,soa}=soa           Memory layout for code generation
    --datatype TEXT:{float,double}=soa    Data type for floating point variables
    --force                               Force code generation even if there is any incompatibility
    --only-check-compatibility            Check compatibility and return without generating code
    --opt-ionvar-copy                     Optimize copies of ion variables (false)

Documentation

We are working on user documentation, you can find current drafts of :

Citation

If you would like to know more about the the NMODL Framework, see following paper:

  • Pramod Kumbhar, Omar Awile, Liam Keegan, Jorge Alonso, James King, Michael Hines and Felix Schürmann. 2019. An optimizing multi-platform source-to-source compiler framework for the NEURON MODeling Language. In Eprint : arXiv:1905.02241

Support / Contribuition

If you see any issue, feel free to raise a ticket. If you would like to improve this framework, see open issues and contribution guidelines.

Examples / Benchmarks

The benchmarks used to test the performance and parsing capabilities of NMODL Framework are currently being migrated to GitHub. These benchmarks will be published soon in following repositories:

Funding & Acknowledgment

The development of this software was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology. In addition, the development was supported by funding from the National Institutes of Health (NIH) under the Grant Number R01NS11613 (Yale University) and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

Copyright © 2017-2023 Blue Brain Project, EPFL

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nmodl_nightly-0.6.186-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.186-cp312-cp312-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

nmodl_nightly-0.6.186-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.186-cp311-cp311-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

nmodl_nightly-0.6.186-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.186-cp310-cp310-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nmodl_nightly-0.6.186-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.186-cp39-cp39-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nmodl_nightly-0.6.186-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.186-cp38-cp38-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file nmodl_nightly-0.6.186-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11064deb24dbbe50f7aac0f18a0597aa14fdfd9a2ef6f549595f193bbdc68a44
MD5 3770400e4439529fd957619bce6c3181
BLAKE2b-256 ac19ea73e0f25ed9ae2aa86f75afdc749fab3cf87b5a4160b355f3f3653df275

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.186-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e147da761e36408a51feae4bca9df75e9057623b02e6ab2be693d9fec5240dd2
MD5 1ac05ab80ac9cdf3ea0d818119c9d216
BLAKE2b-256 fa57367e5d0d03aad2b1160027d7953f107fd7255761eaa44b2b208c4866bf11

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.186-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 16b2ef18470fff0b17e992c1389ed650e3b50fe87c547db4b7f763842c81e292
MD5 939fa70379bb9cb33df647753e34a229
BLAKE2b-256 6790b8943cfae6bef23f3577bdf673fc4fa82eb03b75a76a1ec3f8c2a0a6fd4f

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.186-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5c91de7c9c725df36618c157f18d9b88854d1712e3621ac60b0560a5ece1ffa1
MD5 21b921a3783c8a6fcf3da1e2a12f885f
BLAKE2b-256 75f76e5d3c3c77ab65621e332ea7cd7774833403c86582bc9b64654dae4e3aa9

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.186-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d0f8054adf00921f2f213746aa863cac223a515cb5b7c17bd986ce144fc7a34
MD5 df50f6281487858523c4f85d4d0de47d
BLAKE2b-256 770e7dc2347dd34bc3d216a807df9864f0608c18f6e8a32b5951b047af19bc2f

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.186-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b75871a5f479e0b5e61c31f61e036937595245a43c8b28029f3618f5859e5c86
MD5 914ac8fa59bd7f1c3c1a89c9a77b699b
BLAKE2b-256 d0351566b99a9c86feee901be6c03c286b21fc3d9d7b1666fbdbdbe85b9845bd

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.186-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84d38aa740bf0ad1259ef5b37036803b71249d4cc8b3f38b24d3afffd0bf6fd8
MD5 5b13e9216190db71224ee28e22bd28bc
BLAKE2b-256 a0360b30890df0732ea8007bab2be37396b59213dada8ede4bdadc03b14ce8db

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.186-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 7a252ebeeaf8e63f76dbf75ddb6aabd87c023c45cdc06b049ae8249e01dcf523
MD5 b500d3d5f49ed7a9978bdef8bf741511
BLAKE2b-256 8241fe4c8c02df441f59621e77f9ba9c78b7663b89816fd1a94125e583ea5102

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.186-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c111e72320de190a5018f0f002d525a78b2c16161caeffc929118e7a6b3d3a0f
MD5 df3859a656758a82f6428d7aca3ff6b8
BLAKE2b-256 d89d50a191709ef93c26a4e8f3d5b5858eed9a83a7fca32703cccb0ec36665d4

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.186-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.186-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 8d931bf4dc2ada7130e49591e7b0acab6856118293a035be8aba55e369e45155
MD5 562b259153eab422942e3cdce2aa27f9
BLAKE2b-256 185424b76e213cc0102f880ad2c04329db7b8810df77ec403e83bec09a9e58a0

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page