Skip to main content

NEURON Modeling Language Source-to-Source Compiler Framework

Project description

github workflow Build Status codecov CII Best Practices

The NMODL Framework is a code generation engine for NEURON MODeling Language (NMODL). It is designed with modern compiler and code generation techniques to:

  • Provide modular tools for parsing, analysing and transforming NMODL

  • Provide easy to use, high level Python API

  • Generate optimised code for modern compute architectures including CPUs, GPUs

  • Flexibility to implement new simulator backends

  • Support for full NMODL specification

About NMODL

Simulators like NEURON use NMODL as a domain specific language (DSL) to describe a wide range of membrane and intracellular submodels. Here is an example of exponential synapse specified in NMODL:

NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}
UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}
PARAMETER {
    tau = 0.1 (ms) <1e-9,1e9>
    e = 0 (mV)
}
ASSIGNED {
    v (mV)
    i (nA)
}
STATE {
    g (uS)
}
INITIAL {
    g = 0
}
BREAKPOINT {
    SOLVE state METHOD cnexp
    i = g*(v - e)
}
DERIVATIVE state {
    g' = -g/tau
}
NET_RECEIVE(weight (uS)) {
    g = g + weight
}

Installation

See INSTALL.rst for detailed instructions to build the NMODL from source.

Try NMODL with Docker

To quickly test the NMODL Framework’s analysis capabilities we provide a docker image, which includes the NMODL Framework python library and a fully functional Jupyter notebook environment. After installing docker and docker-compose you can pull and run the NMODL image from your terminal.

To try Python interface directly from CLI, you can run docker image as:

docker run -it --entrypoint=/bin/sh bluebrain/nmodl

And try NMODL Python API discussed later in this README as:

$ python3
Python 3.6.8 (default, Apr  8 2019, 18:17:52)
>>> from nmodl import dsl
>>> import os
>>> examples = dsl.list_examples()
>>> nmodl_string = dsl.load_example(examples[-1])
...

To try Jupyter notebooks you can download docker compose file and run it as:

wget "https://raw.githubusercontent.com/BlueBrain/nmodl/master/docker/docker-compose.yml"
DUID=$(id -u) DGID=$(id -g) HOSTNAME=$(hostname) docker-compose up

If all goes well you should see at the end status messages similar to these:

[I 09:49:53.923 NotebookApp] The Jupyter Notebook is running at:
[I 09:49:53.923 NotebookApp] http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935
[I 09:49:53.923 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    To access the notebook, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
    Or copy and paste one of these URLs:
        http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935

Based on the example above you should then open your browser and navigate to the URL http://127.0.0.1:8888/?token=a7902983bad430a11935.

You can open and run all example notebooks provided in the examples folder. You can also create new notebooks in my_notebooks, which will be stored in a subfolder notebooks at your current working directory.

Using the Python API

Once the NMODL Framework is installed, you can use the Python parsing API to load NMOD file as:

from nmodl import dsl

examples = dsl.list_examples()
nmodl_string = dsl.load_example(examples[-1])
driver = dsl.NmodlDriver()
modast = driver.parse_string(nmodl_string)

The parse_file API returns Abstract Syntax Tree (AST) representation of input NMODL file. One can look at the AST by converting to JSON form as:

>>> print (dsl.to_json(modast))
{
  "Program": [
    {
      "NeuronBlock": [
        {
          "StatementBlock": [
            {
              "Suffix": [
                {
                  "Name": [
                    {
                      "String": [
                        {
                          "name": "POINT_PROCESS"
                        }
                    ...

Every key in the JSON form represent a node in the AST. You can also use visualization API to look at the details of AST as:

from nmodl import ast
ast.view(modast)

which will open AST view in web browser:

ast_viz

Vizualisation of the AST in the NMODL Framework

The central Program node represents the whole MOD file and each of it’s children represent the block in the input NMODL file. Note that this requires X-forwarding if you are using the Docker image.

Once the AST is created, one can use exisiting visitors to perform various analysis/optimisations. One can also easily write his own custom visitor using Python Visitor API. See Python API tutorial for details.

The NMODL Framework also allows us to transform the AST representation back to NMODL form as:

>>> print (dsl.to_nmodl(modast))
NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}

PARAMETER {
    tau = 0.1 (ms) <1e-09,1000000000>
    e = 0 (mV)
}
...

High Level Analysis and Code Generation

The NMODL Framework provides rich model introspection and analysis capabilities using various visitors. Here is an example of theoretical performance characterisation of channels and synapses from rat neocortical column microcircuit published in 2015:

nmodl-perf-stats

Performance results of the NMODL Framework

To understand how you can write your own introspection and analysis tool, see this tutorial.

Once analysis and optimization passes are performed, the NMODL Framework can generate optimised code for modern compute architectures including CPUs (Intel, AMD, ARM) and GPUs (NVIDIA, AMD) platforms. For example, C++, OpenACC and OpenMP backends are implemented and one can choose these backends on command line as:

$ nmodl expsyn.mod sympy --analytic

To know more about code generation backends, see here. NMODL Framework provides number of options (for code generation, optimization passes and ODE solver) which can be listed as:

$ nmodl -H
NMODL : Source-to-Source Code Generation Framework [version]
Usage: /path/<>/nmodl [OPTIONS] file... [SUBCOMMAND]

Positionals:
  file TEXT:FILE ... REQUIRED           One or more MOD files to process

Options:
  -h,--help                             Print this help message and exit
  -H,--help-all                         Print this help message including all sub-commands
  --verbose=info                        Verbose logger output (trace, debug, info, warning, error, critical, off)
  -o,--output TEXT=.                    Directory for backend code output
  --scratch TEXT=tmp                    Directory for intermediate code output
  --units TEXT=/path/<>/nrnunits.lib
                                        Directory of units lib file

Subcommands:
host
  HOST/CPU code backends
  Options:
    --c                                   C/C++ backend (true)

acc
  Accelerator code backends
  Options:
    --oacc                                C/C++ backend with OpenACC (false)

sympy
  SymPy based analysis and optimizations
  Options:
    --analytic                            Solve ODEs using SymPy analytic integration (false)
    --pade                                Pade approximation in SymPy analytic integration (false)
    --cse                                 CSE (Common Subexpression Elimination) in SymPy analytic integration (false)
    --conductance                         Add CONDUCTANCE keyword in BREAKPOINT (false)

passes
  Analyse/Optimization passes
  Options:
    --inline                              Perform inlining at NMODL level (false)
    --unroll                              Perform loop unroll at NMODL level (false)
    --const-folding                       Perform constant folding at NMODL level (false)
    --localize                            Convert RANGE variables to LOCAL (false)
    --global-to-range                     Convert GLOBAL variables to RANGE (false)
    --localize-verbatim                   Convert RANGE variables to LOCAL even if verbatim block exist (false)
    --local-rename                        Rename LOCAL variable if variable of same name exist in global scope (false)
    --verbatim-inline                     Inline even if verbatim block exist (false)
    --verbatim-rename                     Rename variables in verbatim block (true)
    --json-ast                            Write AST to JSON file (false)
    --nmodl-ast                           Write AST to NMODL file (false)
    --json-perf                           Write performance statistics to JSON file (false)
    --show-symtab                         Write symbol table to stdout (false)

codegen
  Code generation options
  Options:
    --layout TEXT:{aos,soa}=soa           Memory layout for code generation
    --datatype TEXT:{float,double}=soa    Data type for floating point variables
    --force                               Force code generation even if there is any incompatibility
    --only-check-compatibility            Check compatibility and return without generating code
    --opt-ionvar-copy                     Optimize copies of ion variables (false)

Documentation

We are working on user documentation, you can find current drafts of :

Citation

If you would like to know more about the the NMODL Framework, see following paper:

  • Pramod Kumbhar, Omar Awile, Liam Keegan, Jorge Alonso, James King, Michael Hines and Felix Schürmann. 2019. An optimizing multi-platform source-to-source compiler framework for the NEURON MODeling Language. In Eprint : arXiv:1905.02241

Support / Contribuition

If you see any issue, feel free to raise a ticket. If you would like to improve this framework, see open issues and contribution guidelines.

Examples / Benchmarks

The benchmarks used to test the performance and parsing capabilities of NMODL Framework are currently being migrated to GitHub. These benchmarks will be published soon in following repositories:

Funding & Acknowledgment

The development of this software was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology. In addition, the development was supported by funding from the National Institutes of Health (NIH) under the Grant Number R01NS11613 (Yale University) and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

Copyright © 2017-2023 Blue Brain Project, EPFL

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nmodl_nightly-0.6.206-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.206-cp312-cp312-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

nmodl_nightly-0.6.206-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.206-cp311-cp311-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

nmodl_nightly-0.6.206-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.206-cp310-cp310-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nmodl_nightly-0.6.206-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.206-cp39-cp39-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nmodl_nightly-0.6.206-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.206-cp38-cp38-macosx_10_15_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file nmodl_nightly-0.6.206-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7803351eb85c4f4d9b70222fe42d6a7bf957deb673cfc29290ee9206eaf293b7
MD5 7390e1069b3997f558905a61f6b790a6
BLAKE2b-256 e4ff333cc232fbc99cb56327367aad5fac1b0a8da0a2b8d6bf544e11d71038c1

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.206-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 de26804a7bc3d8fee68096f398822b9eb505a24b411cc5486d86ea233553f354
MD5 8f8014330460d4ef04ea45f9508f9e69
BLAKE2b-256 0506a6ef955877524e98bc07ae7019e3ddffbfd5d23d47057d4c8e5d2bf1e278

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.206-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20aa504f9c03af9b6f0124d004e904b1bfcfcd633660788765e8c7b0c0204f9e
MD5 fa86f7c5927fdd83ad43b2cd9ba46ec6
BLAKE2b-256 845fba310fd460d2a110e693bf90337be0cf6f2b6c5aa6bfcaef48e3aee82e05

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.206-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 79527d4389b28bbb096722d639ee9f56e59c88fb1d3b775d849681368da8283f
MD5 54ef0f298ed79dd2752b7153cae411be
BLAKE2b-256 0cd1a9bdd6cf90cfa6277c86ef38b69b6a356776c9c790af198e867c15ba5227

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.206-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54a4877205576f9e4405c8d2ff8f1d2fdad1ab31e2bdfab3643ed81f59ae66b0
MD5 46d99389601d489a63d39e6ed2d559f5
BLAKE2b-256 188af975983fd9c6ef186b620a1e083ba51acbbe713302c2c177bd0888596e4b

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.206-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 00fca1726f435faf4cf9fb8d8de5a8da7f091d10a1acdc3f0791133cffb6a2e6
MD5 5e62b4405cb8485d5732a3825b030a82
BLAKE2b-256 0b6472bc6e648d4fc5db31c06b22949941ced112e1592aabe60df050dde61a71

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.206-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00c76ddb4cfdb98ae8c9d9ac8abbd88a3d1309fb138d4004585b5873740f02f1
MD5 0683c299e5821267a2fa14eb6cb78889
BLAKE2b-256 ab3d837ba46ecb584a1251fa41e364eb829a93c1c68aeb0d93e11488c1a25392

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.206-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5a9e8f56d2868245498ae91a8917789c1132254a95dcb3fa80e8ec50cde6f7ff
MD5 0d685d412cb534974919bf3575566548
BLAKE2b-256 32578abceeba6409edb0a5a643793e3d5d2915412b8720f7293603b209cf3a87

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.206-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 442877be74860f79251aa8260ccfaed292a87705028e6e4e81a9c86f7179a0ec
MD5 86b98b09f2f2a9dd2bcb047e6d5ba4e3
BLAKE2b-256 7a98a8c8434858561d10623e867a4f64d4681d2d86734f3686af3019cd04424d

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.206-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.206-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6c471519f987a8293e1f05bc6c20a57d95dc238ee003fd2f218d9222745c8042
MD5 dee0b8ea9bbf3becdaff3eb703ffd55f
BLAKE2b-256 861b0b3e3d785076cae03fd200186981477a4937d801c9412c3eec76e416ef0b

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page