Skip to main content

NEURON Modeling Language Source-to-Source Compiler Framework

Project description

github workflow Build Status codecov CII Best Practices

The NMODL Framework is a code generation engine for NEURON MODeling Language (NMODL). It is designed with modern compiler and code generation techniques to:

  • Provide modular tools for parsing, analysing and transforming NMODL

  • Provide easy to use, high level Python API

  • Generate optimised code for modern compute architectures including CPUs, GPUs

  • Flexibility to implement new simulator backends

  • Support for full NMODL specification

About NMODL

Simulators like NEURON use NMODL as a domain specific language (DSL) to describe a wide range of membrane and intracellular submodels. Here is an example of exponential synapse specified in NMODL:

NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}
UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}
PARAMETER {
    tau = 0.1 (ms) <1e-9,1e9>
    e = 0 (mV)
}
ASSIGNED {
    v (mV)
    i (nA)
}
STATE {
    g (uS)
}
INITIAL {
    g = 0
}
BREAKPOINT {
    SOLVE state METHOD cnexp
    i = g*(v - e)
}
DERIVATIVE state {
    g' = -g/tau
}
NET_RECEIVE(weight (uS)) {
    g = g + weight
}

Installation

See INSTALL.rst for detailed instructions to build the NMODL from source.

Try NMODL with Docker

To quickly test the NMODL Framework’s analysis capabilities we provide a docker image, which includes the NMODL Framework python library and a fully functional Jupyter notebook environment. After installing docker and docker-compose you can pull and run the NMODL image from your terminal.

To try Python interface directly from CLI, you can run docker image as:

docker run -it --entrypoint=/bin/sh bluebrain/nmodl

And try NMODL Python API discussed later in this README as:

$ python3
Python 3.6.8 (default, Apr  8 2019, 18:17:52)
>>> from nmodl import dsl
>>> import os
>>> examples = dsl.list_examples()
>>> nmodl_string = dsl.load_example(examples[-1])
...

To try Jupyter notebooks you can download docker compose file and run it as:

wget "https://raw.githubusercontent.com/BlueBrain/nmodl/master/docker/docker-compose.yml"
DUID=$(id -u) DGID=$(id -g) HOSTNAME=$(hostname) docker-compose up

If all goes well you should see at the end status messages similar to these:

[I 09:49:53.923 NotebookApp] The Jupyter Notebook is running at:
[I 09:49:53.923 NotebookApp] http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935
[I 09:49:53.923 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    To access the notebook, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
    Or copy and paste one of these URLs:
        http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935

Based on the example above you should then open your browser and navigate to the URL http://127.0.0.1:8888/?token=a7902983bad430a11935.

You can open and run all example notebooks provided in the examples folder. You can also create new notebooks in my_notebooks, which will be stored in a subfolder notebooks at your current working directory.

Using the Python API

Once the NMODL Framework is installed, you can use the Python parsing API to load NMOD file as:

from nmodl import dsl

examples = dsl.list_examples()
nmodl_string = dsl.load_example(examples[-1])
driver = dsl.NmodlDriver()
modast = driver.parse_string(nmodl_string)

The parse_file API returns Abstract Syntax Tree (AST) representation of input NMODL file. One can look at the AST by converting to JSON form as:

>>> print (dsl.to_json(modast))
{
  "Program": [
    {
      "NeuronBlock": [
        {
          "StatementBlock": [
            {
              "Suffix": [
                {
                  "Name": [
                    {
                      "String": [
                        {
                          "name": "POINT_PROCESS"
                        }
                    ...

Every key in the JSON form represent a node in the AST. You can also use visualization API to look at the details of AST as:

from nmodl import ast
ast.view(modast)

which will open AST view in web browser:

ast_viz

Vizualisation of the AST in the NMODL Framework

The central Program node represents the whole MOD file and each of it’s children represent the block in the input NMODL file. Note that this requires X-forwarding if you are using the Docker image.

Once the AST is created, one can use exisiting visitors to perform various analysis/optimisations. One can also easily write his own custom visitor using Python Visitor API. See Python API tutorial for details.

The NMODL Framework also allows us to transform the AST representation back to NMODL form as:

>>> print (dsl.to_nmodl(modast))
NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}

PARAMETER {
    tau = 0.1 (ms) <1e-09,1000000000>
    e = 0 (mV)
}
...

High Level Analysis and Code Generation

The NMODL Framework provides rich model introspection and analysis capabilities using various visitors. Here is an example of theoretical performance characterisation of channels and synapses from rat neocortical column microcircuit published in 2015:

nmodl-perf-stats

Performance results of the NMODL Framework

To understand how you can write your own introspection and analysis tool, see this tutorial.

Once analysis and optimization passes are performed, the NMODL Framework can generate optimised code for modern compute architectures including CPUs (Intel, AMD, ARM) and GPUs (NVIDIA, AMD) platforms. For example, C++, OpenACC and OpenMP backends are implemented and one can choose these backends on command line as:

$ nmodl expsyn.mod sympy --analytic

To know more about code generation backends, see here. NMODL Framework provides number of options (for code generation, optimization passes and ODE solver) which can be listed as:

$ nmodl -H
NMODL : Source-to-Source Code Generation Framework [version]
Usage: /path/<>/nmodl [OPTIONS] file... [SUBCOMMAND]

Positionals:
  file TEXT:FILE ... REQUIRED           One or more MOD files to process

Options:
  -h,--help                             Print this help message and exit
  -H,--help-all                         Print this help message including all sub-commands
  --verbose=info                        Verbose logger output (trace, debug, info, warning, error, critical, off)
  -o,--output TEXT=.                    Directory for backend code output
  --scratch TEXT=tmp                    Directory for intermediate code output
  --units TEXT=/path/<>/nrnunits.lib
                                        Directory of units lib file

Subcommands:
host
  HOST/CPU code backends
  Options:
    --c                                   C/C++ backend (true)

acc
  Accelerator code backends
  Options:
    --oacc                                C/C++ backend with OpenACC (false)

sympy
  SymPy based analysis and optimizations
  Options:
    --analytic                            Solve ODEs using SymPy analytic integration (false)
    --pade                                Pade approximation in SymPy analytic integration (false)
    --cse                                 CSE (Common Subexpression Elimination) in SymPy analytic integration (false)
    --conductance                         Add CONDUCTANCE keyword in BREAKPOINT (false)

passes
  Analyse/Optimization passes
  Options:
    --inline                              Perform inlining at NMODL level (false)
    --unroll                              Perform loop unroll at NMODL level (false)
    --const-folding                       Perform constant folding at NMODL level (false)
    --localize                            Convert RANGE variables to LOCAL (false)
    --global-to-range                     Convert GLOBAL variables to RANGE (false)
    --localize-verbatim                   Convert RANGE variables to LOCAL even if verbatim block exist (false)
    --local-rename                        Rename LOCAL variable if variable of same name exist in global scope (false)
    --verbatim-inline                     Inline even if verbatim block exist (false)
    --verbatim-rename                     Rename variables in verbatim block (true)
    --json-ast                            Write AST to JSON file (false)
    --nmodl-ast                           Write AST to NMODL file (false)
    --json-perf                           Write performance statistics to JSON file (false)
    --show-symtab                         Write symbol table to stdout (false)

codegen
  Code generation options
  Options:
    --layout TEXT:{aos,soa}=soa           Memory layout for code generation
    --datatype TEXT:{float,double}=soa    Data type for floating point variables
    --force                               Force code generation even if there is any incompatibility
    --only-check-compatibility            Check compatibility and return without generating code
    --opt-ionvar-copy                     Optimize copies of ion variables (false)

Documentation

We are working on user documentation, you can find current drafts of :

Citation

If you would like to know more about the the NMODL Framework, see following paper:

  • Pramod Kumbhar, Omar Awile, Liam Keegan, Jorge Alonso, James King, Michael Hines and Felix Schürmann. 2019. An optimizing multi-platform source-to-source compiler framework for the NEURON MODeling Language. In Eprint : arXiv:1905.02241

Support / Contribuition

If you see any issue, feel free to raise a ticket. If you would like to improve this framework, see open issues and contribution guidelines.

Examples / Benchmarks

The benchmarks used to test the performance and parsing capabilities of NMODL Framework are currently being migrated to GitHub. These benchmarks will be published soon in following repositories:

Funding & Acknowledgment

The development of this software was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology. In addition, the development was supported by funding from the National Institutes of Health (NIH) under the Grant Number R01NS11613 (Yale University) and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

Copyright © 2017-2023 Blue Brain Project, EPFL

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nmodl_nightly-0.6.277-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.277-cp312-cp312-macosx_10_15_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

nmodl_nightly-0.6.277-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.277-cp311-cp311-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

nmodl_nightly-0.6.277-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.277-cp310-cp310-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nmodl_nightly-0.6.277-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.277-cp39-cp39-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nmodl_nightly-0.6.277-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.277-cp38-cp38-macosx_10_15_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file nmodl_nightly-0.6.277-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d540254ef220bfac21650d396f05c88a25741e920954aa429e759faa5c3ca9cd
MD5 04101e77b9ca7841eca79367994d4c5b
BLAKE2b-256 ce028d73cbf56fe99dbca59520bf2f6c172ff71a2047430f44dc1780a61faaef

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.277-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 92728ac34236fae2662e3c8d70369a21532f7b295905e07225c434ef31d99cd2
MD5 825b4117c1d9c8b5f60520416decb0ea
BLAKE2b-256 1efa712f981a287e4bf75fe6c34db4a11e063cdd67a3cbdc256fa4d7a3167a34

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.277-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 983cc360a13b428599079382c101947cb2848cf1e1c88a8f55aae5cd5c45d9d2
MD5 4563cbdb94eb769fc0c0a2efefcfeb0f
BLAKE2b-256 9ba8c5a23cd5d201ed6d58709f1bbdc09f961f23b67a78dbb0a722734fbff1d3

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.277-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 060b7ed2f87c4f021149cc27ddcf0fd774fdd2feea6bc4ca97fc3379f1820d36
MD5 f198ab782b4f39720d41759165e84418
BLAKE2b-256 0149a6859bf672be87b8734f1caa8242e085c774bf0add0bc30157669e36bfe3

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.277-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0ea0acd6bb8182b5dfdc203e68b87a4886379f75fafb71cedbef948029b459b6
MD5 4827cfe771bfa48f571213739410e1c2
BLAKE2b-256 d085d8e93587ba808b9f364047b2573517e481704b5ca3579e3e91ead6a0dc5e

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.277-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d8baaf5daf4de29eabe020518b670e101a4decec2c6d0f7470d318f92b3d9f5e
MD5 0f2d795c1d23981d46f9ed5ea8341e11
BLAKE2b-256 8fc570aef1d435cc5e9786d98a2c744fba7b96eb3f71a94f0f33e961ad64bf0f

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.277-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ffede1915dd73ee423e36bebc7af1f205380c79dc516e8007a9d23edebbe4a1c
MD5 65dcd534d87278cc981462c118a97c52
BLAKE2b-256 269e2796471e84838840ca2fbb7277b2e3b39f452e998cf66ef4cf6be6983fde

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.277-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1700c8f8033d904cb7056f9d2c9b47e32cc260cf29ca4fd1a1be6d3dae794f6b
MD5 dc3a546f153351084f836631449f04a0
BLAKE2b-256 164f6b612a98ac7b7c4cfd2b306ff7f189e32d55b45220ec8aa1a5f56c7309fc

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.277-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f4d20e0a6ebf2418de03d57c5549e945f028b911b43404803e06e85183b9fe4d
MD5 13fd79956da37b388f13935abb763c6e
BLAKE2b-256 359da91c78eba73e61f5829e7507d0d41920b061fa0d5102161cd8cf5e4e214c

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.277-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.277-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 55fda3b9c17563723de9d59a29e86aa2e583ad3459a2e9b304b0277b3e25643d
MD5 bc24b10011e6f482b1e5f70f6a9c46b0
BLAKE2b-256 92598aefb24c46c3da3cda31da69cbd7c70702a35cf44e622b9ea69508d1ff7a

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page