Skip to main content

NEURON Modeling Language Source-to-Source Compiler Framework

Project description

github workflow Build Status codecov CII Best Practices

The NMODL Framework is a code generation engine for NEURON MODeling Language (NMODL). It is designed with modern compiler and code generation techniques to:

  • Provide modular tools for parsing, analysing and transforming NMODL

  • Provide easy to use, high level Python API

  • Generate optimised code for modern compute architectures including CPUs, GPUs

  • Flexibility to implement new simulator backends

  • Support for full NMODL specification

About NMODL

Simulators like NEURON use NMODL as a domain specific language (DSL) to describe a wide range of membrane and intracellular submodels. Here is an example of exponential synapse specified in NMODL:

NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}
UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}
PARAMETER {
    tau = 0.1 (ms) <1e-9,1e9>
    e = 0 (mV)
}
ASSIGNED {
    v (mV)
    i (nA)
}
STATE {
    g (uS)
}
INITIAL {
    g = 0
}
BREAKPOINT {
    SOLVE state METHOD cnexp
    i = g*(v - e)
}
DERIVATIVE state {
    g' = -g/tau
}
NET_RECEIVE(weight (uS)) {
    g = g + weight
}

Installation

See INSTALL.rst for detailed instructions to build the NMODL from source.

Try NMODL with Docker

To quickly test the NMODL Framework’s analysis capabilities we provide a docker image, which includes the NMODL Framework python library and a fully functional Jupyter notebook environment. After installing docker and docker-compose you can pull and run the NMODL image from your terminal.

To try Python interface directly from CLI, you can run docker image as:

docker run -it --entrypoint=/bin/sh bluebrain/nmodl

And try NMODL Python API discussed later in this README as:

$ python3
Python 3.6.8 (default, Apr  8 2019, 18:17:52)
>>> from nmodl import dsl
>>> import os
>>> examples = dsl.list_examples()
>>> nmodl_string = dsl.load_example(examples[-1])
...

To try Jupyter notebooks you can download docker compose file and run it as:

wget "https://raw.githubusercontent.com/BlueBrain/nmodl/master/docker/docker-compose.yml"
DUID=$(id -u) DGID=$(id -g) HOSTNAME=$(hostname) docker-compose up

If all goes well you should see at the end status messages similar to these:

[I 09:49:53.923 NotebookApp] The Jupyter Notebook is running at:
[I 09:49:53.923 NotebookApp] http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935
[I 09:49:53.923 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    To access the notebook, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
    Or copy and paste one of these URLs:
        http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935

Based on the example above you should then open your browser and navigate to the URL http://127.0.0.1:8888/?token=a7902983bad430a11935.

You can open and run all example notebooks provided in the examples folder. You can also create new notebooks in my_notebooks, which will be stored in a subfolder notebooks at your current working directory.

Using the Python API

Once the NMODL Framework is installed, you can use the Python parsing API to load NMOD file as:

from nmodl import dsl

examples = dsl.list_examples()
nmodl_string = dsl.load_example(examples[-1])
driver = dsl.NmodlDriver()
modast = driver.parse_string(nmodl_string)

The parse_file API returns Abstract Syntax Tree (AST) representation of input NMODL file. One can look at the AST by converting to JSON form as:

>>> print (dsl.to_json(modast))
{
  "Program": [
    {
      "NeuronBlock": [
        {
          "StatementBlock": [
            {
              "Suffix": [
                {
                  "Name": [
                    {
                      "String": [
                        {
                          "name": "POINT_PROCESS"
                        }
                    ...

Every key in the JSON form represent a node in the AST. You can also use visualization API to look at the details of AST as:

from nmodl import ast
ast.view(modast)

which will open AST view in web browser:

ast_viz

Vizualisation of the AST in the NMODL Framework

The central Program node represents the whole MOD file and each of it’s children represent the block in the input NMODL file. Note that this requires X-forwarding if you are using the Docker image.

Once the AST is created, one can use exisiting visitors to perform various analysis/optimisations. One can also easily write his own custom visitor using Python Visitor API. See Python API tutorial for details.

The NMODL Framework also allows us to transform the AST representation back to NMODL form as:

>>> print (dsl.to_nmodl(modast))
NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}

PARAMETER {
    tau = 0.1 (ms) <1e-09,1000000000>
    e = 0 (mV)
}
...

High Level Analysis and Code Generation

The NMODL Framework provides rich model introspection and analysis capabilities using various visitors. Here is an example of theoretical performance characterisation of channels and synapses from rat neocortical column microcircuit published in 2015:

nmodl-perf-stats

Performance results of the NMODL Framework

To understand how you can write your own introspection and analysis tool, see this tutorial.

Once analysis and optimization passes are performed, the NMODL Framework can generate optimised code for modern compute architectures including CPUs (Intel, AMD, ARM) and GPUs (NVIDIA, AMD) platforms. For example, C++, OpenACC and OpenMP backends are implemented and one can choose these backends on command line as:

$ nmodl expsyn.mod sympy --analytic

To know more about code generation backends, see here. NMODL Framework provides number of options (for code generation, optimization passes and ODE solver) which can be listed as:

$ nmodl -H
NMODL : Source-to-Source Code Generation Framework [version]
Usage: /path/<>/nmodl [OPTIONS] file... [SUBCOMMAND]

Positionals:
  file TEXT:FILE ... REQUIRED           One or more MOD files to process

Options:
  -h,--help                             Print this help message and exit
  -H,--help-all                         Print this help message including all sub-commands
  --verbose=info                        Verbose logger output (trace, debug, info, warning, error, critical, off)
  -o,--output TEXT=.                    Directory for backend code output
  --scratch TEXT=tmp                    Directory for intermediate code output
  --units TEXT=/path/<>/nrnunits.lib
                                        Directory of units lib file

Subcommands:
host
  HOST/CPU code backends
  Options:
    --c                                   C/C++ backend (true)

acc
  Accelerator code backends
  Options:
    --oacc                                C/C++ backend with OpenACC (false)

sympy
  SymPy based analysis and optimizations
  Options:
    --analytic                            Solve ODEs using SymPy analytic integration (false)
    --pade                                Pade approximation in SymPy analytic integration (false)
    --cse                                 CSE (Common Subexpression Elimination) in SymPy analytic integration (false)
    --conductance                         Add CONDUCTANCE keyword in BREAKPOINT (false)

passes
  Analyse/Optimization passes
  Options:
    --inline                              Perform inlining at NMODL level (false)
    --unroll                              Perform loop unroll at NMODL level (false)
    --const-folding                       Perform constant folding at NMODL level (false)
    --localize                            Convert RANGE variables to LOCAL (false)
    --global-to-range                     Convert GLOBAL variables to RANGE (false)
    --localize-verbatim                   Convert RANGE variables to LOCAL even if verbatim block exist (false)
    --local-rename                        Rename LOCAL variable if variable of same name exist in global scope (false)
    --verbatim-inline                     Inline even if verbatim block exist (false)
    --verbatim-rename                     Rename variables in verbatim block (true)
    --json-ast                            Write AST to JSON file (false)
    --nmodl-ast                           Write AST to NMODL file (false)
    --json-perf                           Write performance statistics to JSON file (false)
    --show-symtab                         Write symbol table to stdout (false)

codegen
  Code generation options
  Options:
    --layout TEXT:{aos,soa}=soa           Memory layout for code generation
    --datatype TEXT:{float,double}=soa    Data type for floating point variables
    --force                               Force code generation even if there is any incompatibility
    --only-check-compatibility            Check compatibility and return without generating code
    --opt-ionvar-copy                     Optimize copies of ion variables (false)

Documentation

We are working on user documentation, you can find current drafts of :

Citation

If you would like to know more about the the NMODL Framework, see following paper:

  • Pramod Kumbhar, Omar Awile, Liam Keegan, Jorge Alonso, James King, Michael Hines and Felix Schürmann. 2019. An optimizing multi-platform source-to-source compiler framework for the NEURON MODeling Language. In Eprint : arXiv:1905.02241

Support / Contribuition

If you see any issue, feel free to raise a ticket. If you would like to improve this framework, see open issues and contribution guidelines.

Examples / Benchmarks

The benchmarks used to test the performance and parsing capabilities of NMODL Framework are currently being migrated to GitHub. These benchmarks will be published soon in following repositories:

Funding & Acknowledgment

The development of this software was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology. In addition, the development was supported by funding from the National Institutes of Health (NIH) under the Grant Number R01NS11613 (Yale University) and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

Copyright © 2017-2023 Blue Brain Project, EPFL

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nmodl_nightly-0.6.367-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.367-cp312-cp312-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

nmodl_nightly-0.6.367-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.367-cp311-cp311-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

nmodl_nightly-0.6.367-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.367-cp310-cp310-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nmodl_nightly-0.6.367-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.367-cp39-cp39-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nmodl_nightly-0.6.367-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.367-cp38-cp38-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file nmodl_nightly-0.6.367-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2d067b6b6a7e564b3f51399b09eb71741b49d5a473c43ea243fc9666d0b4b53
MD5 30c05811622a61c3c7c2b12512d71e54
BLAKE2b-256 17aed5433b7d7e07430a0ff70aa9931ebd7d0c2b582d1edf3db1ea64bb6c2f9e

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.367-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 9e803d5eedc9cea1c412bccac934000ee89bf70c14f4260efcdebe085152fc12
MD5 ea2aa578675fe0082e51837b66b6f9e6
BLAKE2b-256 6186af51079cae4f80e2f612a59bdc5cb57c45f180c1d5a39549f590cd7cafda

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.367-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ef5b01c6cf4e1264bc1e1515f0534ef5bd07604c2b17f46dcf4c396c2b40165c
MD5 3b5dc5ffdac4168fda4215d21ace9d25
BLAKE2b-256 0fd777908bc7229b3f5dcdda6d95df22f8d263227b75c92eeb03efc989963f56

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.367-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5e3d9137d693f6af9b5a3a7b37eb7f28bb4373d8e5c5cbefca579e5d4d216118
MD5 0cfdca68b56ad0c58a7bf41fff5f943d
BLAKE2b-256 071e9a43b0d08dc0f7cf51acb1858efb3ac68deb6a94e2f4b69c222bc1b9869b

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.367-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad00521ff1c4748285f1e8339ad99bffc2efd48cf91ebad30a3c95146b91d04a
MD5 d841b6d59148d576b11881c67ac8e833
BLAKE2b-256 19d1c259cdc1508eb482674b10b18b00ae044f7e427686856c5d0305d64b6a7c

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.367-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3247b85ec076554bf9abc73d6d7eaacf88878d8e63d503520f3a3c9cccfe9099
MD5 b37181a236d0d9cf8bfd709b58f2481d
BLAKE2b-256 0e2d364ea07f1b9265cb6fe4e06fdae6f0deb83f86639207a9c1979e189536c8

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.367-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 31d10ab39616375069f37fa8c595887e336f088b09a68015edb2400d931e67a1
MD5 492c5a890f82b97846edceaaf46c134f
BLAKE2b-256 b0a6483c7dd199491ba698e809bd1bc437dd00cfcaa02582294f9b005328bfcf

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.367-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d0475a331c61cf1c9bd379fa1826f606c69c5033db47c73c2820ca9ff77c3a32
MD5 7ba2071b43d938584332c9ece51a28b3
BLAKE2b-256 0288c0033b36f3bb04bca4181d77a79b19b329206ae5bb448aab45ca3975d7a6

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.367-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 63b45543fc9da24e7535e2951121740c80f72c80896747a239cb1e20880f1a47
MD5 6a40618dab05406b37f146ae1c52ab83
BLAKE2b-256 b372ae40639649282d72197a6023cbdb5d7691936b6b8786fb0d0d26c2c26420

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.367-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.367-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3f4dda8bc352b3f20ee52342e357ff5b2f47e92d2ca8672527c9dbd3a5cbac26
MD5 853e557727c592f13494119f27ece6bd
BLAKE2b-256 edc57f5eb5a940dc5bfb8d613949953bc3b0281a43c8b4f70f4385e9e12ba3f3

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page