Skip to main content

NEURON Modeling Language Source-to-Source Compiler Framework

Project description

github workflow Build Status codecov CII Best Practices

The NMODL Framework is a code generation engine for NEURON MODeling Language (NMODL). It is designed with modern compiler and code generation techniques to:

  • Provide modular tools for parsing, analysing and transforming NMODL

  • Provide easy to use, high level Python API

  • Generate optimised code for modern compute architectures including CPUs, GPUs

  • Flexibility to implement new simulator backends

  • Support for full NMODL specification

About NMODL

Simulators like NEURON use NMODL as a domain specific language (DSL) to describe a wide range of membrane and intracellular submodels. Here is an example of exponential synapse specified in NMODL:

NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}
UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}
PARAMETER {
    tau = 0.1 (ms) <1e-9,1e9>
    e = 0 (mV)
}
ASSIGNED {
    v (mV)
    i (nA)
}
STATE {
    g (uS)
}
INITIAL {
    g = 0
}
BREAKPOINT {
    SOLVE state METHOD cnexp
    i = g*(v - e)
}
DERIVATIVE state {
    g' = -g/tau
}
NET_RECEIVE(weight (uS)) {
    g = g + weight
}

Installation

See INSTALL.rst for detailed instructions to build the NMODL from source.

Try NMODL with Docker

To quickly test the NMODL Framework’s analysis capabilities we provide a docker image, which includes the NMODL Framework python library and a fully functional Jupyter notebook environment. After installing docker and docker-compose you can pull and run the NMODL image from your terminal.

To try Python interface directly from CLI, you can run docker image as:

docker run -it --entrypoint=/bin/sh bluebrain/nmodl

And try NMODL Python API discussed later in this README as:

$ python3
Python 3.6.8 (default, Apr  8 2019, 18:17:52)
>>> from nmodl import dsl
>>> import os
>>> examples = dsl.list_examples()
>>> nmodl_string = dsl.load_example(examples[-1])
...

To try Jupyter notebooks you can download docker compose file and run it as:

wget "https://raw.githubusercontent.com/BlueBrain/nmodl/master/docker/docker-compose.yml"
DUID=$(id -u) DGID=$(id -g) HOSTNAME=$(hostname) docker-compose up

If all goes well you should see at the end status messages similar to these:

[I 09:49:53.923 NotebookApp] The Jupyter Notebook is running at:
[I 09:49:53.923 NotebookApp] http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935
[I 09:49:53.923 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    To access the notebook, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
    Or copy and paste one of these URLs:
        http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935

Based on the example above you should then open your browser and navigate to the URL http://127.0.0.1:8888/?token=a7902983bad430a11935.

You can open and run all example notebooks provided in the examples folder. You can also create new notebooks in my_notebooks, which will be stored in a subfolder notebooks at your current working directory.

Using the Python API

Once the NMODL Framework is installed, you can use the Python parsing API to load NMOD file as:

from nmodl import dsl

examples = dsl.list_examples()
nmodl_string = dsl.load_example(examples[-1])
driver = dsl.NmodlDriver()
modast = driver.parse_string(nmodl_string)

The parse_file API returns Abstract Syntax Tree (AST) representation of input NMODL file. One can look at the AST by converting to JSON form as:

>>> print (dsl.to_json(modast))
{
  "Program": [
    {
      "NeuronBlock": [
        {
          "StatementBlock": [
            {
              "Suffix": [
                {
                  "Name": [
                    {
                      "String": [
                        {
                          "name": "POINT_PROCESS"
                        }
                    ...

Every key in the JSON form represent a node in the AST. You can also use visualization API to look at the details of AST as:

from nmodl import ast
ast.view(modast)

which will open AST view in web browser:

ast_viz

Vizualisation of the AST in the NMODL Framework

The central Program node represents the whole MOD file and each of it’s children represent the block in the input NMODL file. Note that this requires X-forwarding if you are using the Docker image.

Once the AST is created, one can use exisiting visitors to perform various analysis/optimisations. One can also easily write his own custom visitor using Python Visitor API. See Python API tutorial for details.

The NMODL Framework also allows us to transform the AST representation back to NMODL form as:

>>> print (dsl.to_nmodl(modast))
NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}

PARAMETER {
    tau = 0.1 (ms) <1e-09,1000000000>
    e = 0 (mV)
}
...

High Level Analysis and Code Generation

The NMODL Framework provides rich model introspection and analysis capabilities using various visitors. Here is an example of theoretical performance characterisation of channels and synapses from rat neocortical column microcircuit published in 2015:

nmodl-perf-stats

Performance results of the NMODL Framework

To understand how you can write your own introspection and analysis tool, see this tutorial.

Once analysis and optimization passes are performed, the NMODL Framework can generate optimised code for modern compute architectures including CPUs (Intel, AMD, ARM) and GPUs (NVIDIA, AMD) platforms. For example, C++, OpenACC and OpenMP backends are implemented and one can choose these backends on command line as:

$ nmodl expsyn.mod sympy --analytic

To know more about code generation backends, see here. NMODL Framework provides number of options (for code generation, optimization passes and ODE solver) which can be listed as:

$ nmodl -H
NMODL : Source-to-Source Code Generation Framework [version]
Usage: /path/<>/nmodl [OPTIONS] file... [SUBCOMMAND]

Positionals:
  file TEXT:FILE ... REQUIRED           One or more MOD files to process

Options:
  -h,--help                             Print this help message and exit
  -H,--help-all                         Print this help message including all sub-commands
  --verbose=info                        Verbose logger output (trace, debug, info, warning, error, critical, off)
  -o,--output TEXT=.                    Directory for backend code output
  --scratch TEXT=tmp                    Directory for intermediate code output
  --units TEXT=/path/<>/nrnunits.lib
                                        Directory of units lib file

Subcommands:
host
  HOST/CPU code backends
  Options:
    --c                                   C/C++ backend (true)

acc
  Accelerator code backends
  Options:
    --oacc                                C/C++ backend with OpenACC (false)

sympy
  SymPy based analysis and optimizations
  Options:
    --analytic                            Solve ODEs using SymPy analytic integration (false)
    --pade                                Pade approximation in SymPy analytic integration (false)
    --cse                                 CSE (Common Subexpression Elimination) in SymPy analytic integration (false)
    --conductance                         Add CONDUCTANCE keyword in BREAKPOINT (false)

passes
  Analyse/Optimization passes
  Options:
    --inline                              Perform inlining at NMODL level (false)
    --unroll                              Perform loop unroll at NMODL level (false)
    --const-folding                       Perform constant folding at NMODL level (false)
    --localize                            Convert RANGE variables to LOCAL (false)
    --global-to-range                     Convert GLOBAL variables to RANGE (false)
    --localize-verbatim                   Convert RANGE variables to LOCAL even if verbatim block exist (false)
    --local-rename                        Rename LOCAL variable if variable of same name exist in global scope (false)
    --verbatim-inline                     Inline even if verbatim block exist (false)
    --verbatim-rename                     Rename variables in verbatim block (true)
    --json-ast                            Write AST to JSON file (false)
    --nmodl-ast                           Write AST to NMODL file (false)
    --json-perf                           Write performance statistics to JSON file (false)
    --show-symtab                         Write symbol table to stdout (false)

codegen
  Code generation options
  Options:
    --layout TEXT:{aos,soa}=soa           Memory layout for code generation
    --datatype TEXT:{float,double}=soa    Data type for floating point variables
    --force                               Force code generation even if there is any incompatibility
    --only-check-compatibility            Check compatibility and return without generating code
    --opt-ionvar-copy                     Optimize copies of ion variables (false)

Documentation

We are working on user documentation, you can find current drafts of :

Citation

If you would like to know more about the the NMODL Framework, see following paper:

  • Pramod Kumbhar, Omar Awile, Liam Keegan, Jorge Alonso, James King, Michael Hines and Felix Schürmann. 2019. An optimizing multi-platform source-to-source compiler framework for the NEURON MODeling Language. In Eprint : arXiv:1905.02241

Support / Contribuition

If you see any issue, feel free to raise a ticket. If you would like to improve this framework, see open issues and contribution guidelines.

Examples / Benchmarks

The benchmarks used to test the performance and parsing capabilities of NMODL Framework are currently being migrated to GitHub. These benchmarks will be published soon in following repositories:

Funding & Acknowledgment

The development of this software was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology. In addition, the development was supported by funding from the National Institutes of Health (NIH) under the Grant Number R01NS11613 (Yale University) and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

Copyright © 2017-2023 Blue Brain Project, EPFL

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

nmodl_nightly-0.6.369-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.369-cp312-cp312-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 10.15+ x86-64

nmodl_nightly-0.6.369-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.369-cp311-cp311-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 10.15+ x86-64

nmodl_nightly-0.6.369-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.369-cp310-cp310-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 macOS 10.15+ x86-64

nmodl_nightly-0.6.369-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.369-cp39-cp39-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

nmodl_nightly-0.6.369-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.369-cp38-cp38-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

File details

Details for the file nmodl_nightly-0.6.369-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c78df622cccdf2d49b175b884885e3b2bed3a09de29858c18f7bab3fd5c38514
MD5 8e72bd207d85ca05cc781fbf6df19e00
BLAKE2b-256 c789bdfd0ae100f53e5fcd2a4b7c2630c919eba1172f8f5524becd225d3a4e0c

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.369-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 018d65b25f4e5d252fe7f8b402a6f030352d41e2886274a645df17c27e103b20
MD5 e69db01b622d3d90d86705ae16cde0ff
BLAKE2b-256 d12f6e6f2706ac425970e0a61d4c253d582ad6ed0ddab2214df9bfcc24949c9c

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.369-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22ed0cfd541d2f32efacf89658c3a7d8184bceab7726f6bf32b915d84726dbcb
MD5 00bcaf590db25e3a0e1333ebfadb25a6
BLAKE2b-256 22e26b4c38505d23d81e655bf2f8043c3e9f908c2b43153a6c18fb78a6eafe8e

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.369-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 64e3172d600589b73c02a90c9fdbc95653d756e1f18bf63f6a363d29f7135664
MD5 58686ca14e276289efe9c341681b4632
BLAKE2b-256 f9d2a5ed14d422cf266deb77af7410325d0eb17da08cfe0ab7c56eae0cffd095

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.369-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7376f3b43e77baddf72d853ce2150d4ba2077cd01054343edbea8554e2d4035
MD5 b2baf90fc6bd29803479cae3f77c3d27
BLAKE2b-256 4398faa95873b9c9d4b357ba8ee156e9c33259ece375274f2543fce8afe6e4f2

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.369-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3a6def41ca893d623a862ae87e1bdc911604c4f961d610cf086bba2acaa5d0e9
MD5 85b3e9a5ae9dedb990c0ba27c574b00a
BLAKE2b-256 496cd54f659d950b4d2938473397d30ef24c6db5336b6ba195b1185d8b2602b5

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.369-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5ca50e486ba42a9d46a885309f8750a7637c59b90f6366803bae8eb1a44c4787
MD5 7f663d2d8f343528f0626bf57c7901a6
BLAKE2b-256 1dc9846276d55fa431483c32ea2d76587e0dbf842f65a12a128aa55a56f33e3e

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.369-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 86c91f3b3fe37dc84dca9d5dba034bab6a51a9bbe550b4b0ccbd023c72702b0a
MD5 c2fdef29fa438cf199a3a077af1f3e6e
BLAKE2b-256 e606031c76fd22686cc23eb20aa769b711a59365045acd07dd3477facee775b4

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.369-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8130c544a76b3985c88a9014cb59085747fac141b7c8cf7e6ebf5d531bae58ea
MD5 c69b9d6a1bfc7b4dc1307e5c83240e2c
BLAKE2b-256 8e343c2143f4398653eb3a152a4a11002a50d4324d8e77d1b9bcf356956d1843

See more details on using hashes here.

Provenance

File details

Details for the file nmodl_nightly-0.6.369-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.369-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 e8d329186f313c4236bd31bb9a14c7a6f95d9e10d6348fbcda62e68404d60015
MD5 cbe0f535144adf2ae1ac8ed6ed3b2471
BLAKE2b-256 617249b316c8ebfea808bd5fb5528d69086cd56cfbd5297e6aa349f0426a1082

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page