Skip to main content

Kriging Toolkit for Python.

Project description

https://zenodo.org/badge/DOI/10.5281/zenodo.3738604.svg https://badge.fury.io/py/PyKrige.svg https://img.shields.io/conda/vn/conda-forge/pykrige.svg https://travis-ci.com/GeoStat-Framework/PyKrige.svg?branch=master https://coveralls.io/repos/github/GeoStat-Framework/PyKrige/badge.svg?branch=master Documentation Status https://img.shields.io/badge/code%20style-black-000000.svg
PyKrige

Kriging Toolkit for Python.

Purpose

The code supports 2D and 3D ordinary and universal kriging. Standard variogram models (linear, power, spherical, gaussian, exponential) are built in, but custom variogram models can also be used. The 2D universal kriging code currently supports regional-linear, point-logarithmic, and external drift terms, while the 3D universal kriging code supports a regional-linear drift term in all three spatial dimensions. Both universal kriging classes also support generic ‘specified’ and ‘functional’ drift capabilities. With the ‘specified’ drift capability, the user may manually specify the values of the drift(s) at each data point and all grid points. With the ‘functional’ drift capability, the user may provide callable function(s) of the spatial coordinates that define the drift(s). The package includes a module that contains functions that should be useful in working with ASCII grid files (*.asc).

See the documentation at http://pykrige.readthedocs.io/ for more details.

Installation

PyKrige requires Python 3.5+ as well as numpy, scipy. It can be installed from PyPi with,

pip install pykrige

scikit-learn is an optional dependency needed for parameter tuning and regression kriging. matplotlib is an optional dependency needed for plotting.

If you use conda, PyKrige can be installed from the conda-forge channel with,

conda install -c conda-forge pykrige

Ordinary Kriging Example

First we will create a 2D dataset together with the associated x, y grids,

import numpy as np
import pykrige.kriging_tools as kt
from pykrige.ok import OrdinaryKriging

data = np.array([[0.3, 1.2, 0.47],
                 [1.9, 0.6, 0.56],
                 [1.1, 3.2, 0.74],
                 [3.3, 4.4, 1.47],
                 [4.7, 3.8, 1.74]])

gridx = np.arange(0.0, 5.5, 0.5)
gridy = np.arange(0.0, 5.5, 0.5)

# Create the ordinary kriging object. Required inputs are the X-coordinates of
# the data points, the Y-coordinates of the data points, and the Z-values of the
# data points. If no variogram model is specified, defaults to a linear variogram
# model. If no variogram model parameters are specified, then the code automatically
# calculates the parameters by fitting the variogram model to the binned
# experimental semivariogram. The verbose kwarg controls code talk-back, and
# the enable_plotting kwarg controls the display of the semivariogram.
OK = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='linear',
                     verbose=False, enable_plotting=False)

# Creates the kriged grid and the variance grid. Allows for kriging on a rectangular
# grid of points, on a masked rectangular grid of points, or with arbitrary points.
# (See OrdinaryKriging.__doc__ for more information.)
z, ss = OK.execute('grid', gridx, gridy)

# Writes the kriged grid to an ASCII grid file.
kt.write_asc_grid(gridx, gridy, z, filename="output.asc")

Universal Kriging Example

from pykrige.uk import UniversalKriging
import numpy as np

data = np.array([[0.3, 1.2, 0.47],
                 [1.9, 0.6, 0.56],
                 [1.1, 3.2, 0.74],
                 [3.3, 4.4, 1.47],
                 [4.7, 3.8, 1.74]])

gridx = np.arange(0.0, 5.5, 0.5)
gridy = np.arange(0.0, 5.5, 0.5)

# Create the ordinary kriging object. Required inputs are the X-coordinates of
# the data points, the Y-coordinates of the data points, and the Z-values of the
# data points. Variogram is handled as in the ordinary kriging case.
# drift_terms is a list of the drift terms to include; currently supported terms
# are 'regional_linear', 'point_log', and 'external_Z'. Refer to
# UniversalKriging.__doc__ for more information.
UK = UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='linear',
                      drift_terms=['regional_linear'])

# Creates the kriged grid and the variance grid. Allows for kriging on a rectangular
# grid of points, on a masked rectangular grid of points, or with arbitrary points.
# (See UniversalKriging.__doc__ for more information.)
z, ss = UK.execute('grid', gridx, gridy)

Three-Dimensional Kriging Example

from pykrige.ok3d import OrdinaryKriging3D
from pykrige.uk3d import UniversalKriging3D
import numpy as np

data = np.array([[0.1, 0.1, 0.3, 0.9],
                                 [0.2, 0.1, 0.4, 0.8],
                                 [0.1, 0.3, 0.1, 0.9],
                                 [0.5, 0.4, 0.4, 0.5],
                                 [0.3, 0.3, 0.2, 0.7]])

gridx = np.arange(0.0, 0.6, 0.05)
gridy = np.arange(0.0, 0.6, 0.01)
gridz = np.arange(0.0, 0.6, 0.1)

# Create the 3D ordinary kriging object and solves for the three-dimension kriged
# volume and variance. Refer to OrdinaryKriging3D.__doc__ for more information.
ok3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                 variogram_model='linear')
k3d, ss3d = ok3d.execute('grid', gridx, gridy, gridz)

# Create the 3D universal kriging object and solves for the three-dimension kriged
# volume and variance. Refer to UniversalKriging3D.__doc__ for more information.
uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                  variogram_model='linear', drift_terms=['regional_linear'])
k3d, ss3d = uk3d.execute('grid', gridx, gridy, gridz)

# To use the generic 'specified' drift term, the user must provide the drift values
# at each data point and at every grid point. The following example is equivalent to
# using a linear drift in all three spatial dimensions. Refer to
# UniversalKriging3D.__doc__ for more information.
zg, yg, xg = np.meshgrid(gridz, gridy, gridx, indexing='ij')
uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                  variogram_model='linear', drift_terms=['specified'],
                                                  specified_drift=[data[:, 0], data[:, 1]])
k3d, ss3d = uk3d.execute('grid', gridx, gridy, gridz, specified_drift_arrays=[xg, yg, zg])

# To use the generic 'functional' drift term, the user must provide a callable
# function that takes only the spatial dimensions as arguments. The following example
# is equivalent to using a linear drift only in the x-direction. Refer to
# UniversalKriging3D.__doc__ for more information.
func = lambda x, y, z: x
uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                  variogram_model='linear', drift_terms=['functional'],
                                                  functional_drift=[func])
k3d, ss3d = uk3d.execute('grid', gridx, gridy, gridz)

# Note that the use of the 'specified' and 'functional' generic drift capabilities is
# essentially identical in the two-dimensional universal kriging class (except for a
# difference in the number of spatial coordinates for the passed drift functions).
# See UniversalKriging.__doc__ for more information.

GSTools covariance models

You can also use GSTools covariance models as input for the variogram_model in the PyKrige routines:

import numpy as np
from gstools import Gaussian
from pykrige.ok import OrdinaryKriging
from matplotlib import pyplot as plt

# conditioning data
data = np.array([[0.3, 1.2, 0.47],
                 [1.9, 0.6, 0.56],
                 [1.1, 3.2, 0.74],
                 [3.3, 4.4, 1.47],
                 [4.7, 3.8, 1.74]])
# grid definition for output field
gridx = np.arange(0.0, 5.5, 0.1)
gridy = np.arange(0.0, 6.5, 0.1)
# a GSTools based covariance model
cov_model = Gaussian(dim=2, len_scale=1, anis=0.2, angles=-0.5, var=0.5, nugget=0.1)
# ordinary kriging with pykrige
OK1 = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], cov_model)
z1, ss1 = OK1.execute('grid', gridx, gridy)
plt.imshow(z1, origin="lower")
plt.show()

Which gives:

https://raw.githubusercontent.com/GeoStat-Framework/GSTools/master/docs/source/pics/20_pykrige.png

Have a look at the documentation about the Covariance Model of GSTools.

Kriging Parameters Tuning

A scikit-learn compatible API for parameter tuning by cross-validation is exposed in sklearn.model_selection.GridSearchCV. See the Krige CV example for a more practical illustration.

Regression Kriging

Regression kriging can be performed with pykrige.rk.RegressionKriging. This class takes as parameters a scikit-learn regression model, and details of either either the OrdinaryKriging or the UniversalKriging class, and performs a correction steps on the ML regression prediction.

A demonstration of the regression kriging is provided in the corresponding example.

License

PyKrige uses the BSD 3-Clause License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyKrige-1.5.0.tar.gz (942.9 kB view details)

Uploaded Source

Built Distributions

PyKrige-1.5.0-cp38-cp38-win_amd64.whl (443.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyKrige-1.5.0-cp38-cp38-win32.whl (413.4 kB view details)

Uploaded CPython 3.8 Windows x86

PyKrige-1.5.0-cp38-cp38-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0-cp38-cp38-manylinux2010_i686.whl (866.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

PyKrige-1.5.0-cp38-cp38-manylinux1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8

PyKrige-1.5.0-cp38-cp38-manylinux1_i686.whl (866.3 kB view details)

Uploaded CPython 3.8

PyKrige-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl (449.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyKrige-1.5.0-cp37-cp37m-win_amd64.whl (441.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyKrige-1.5.0-cp37-cp37m-win32.whl (410.7 kB view details)

Uploaded CPython 3.7m Windows x86

PyKrige-1.5.0-cp37-cp37m-manylinux2010_x86_64.whl (968.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0-cp37-cp37m-manylinux2010_i686.whl (808.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

PyKrige-1.5.0-cp37-cp37m-manylinux1_x86_64.whl (968.8 kB view details)

Uploaded CPython 3.7m

PyKrige-1.5.0-cp37-cp37m-manylinux1_i686.whl (808.5 kB view details)

Uploaded CPython 3.7m

PyKrige-1.5.0-cp37-cp37m-macosx_10_9_x86_64.whl (447.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyKrige-1.5.0-cp36-cp36m-win_amd64.whl (441.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyKrige-1.5.0-cp36-cp36m-win32.whl (410.7 kB view details)

Uploaded CPython 3.6m Windows x86

PyKrige-1.5.0-cp36-cp36m-manylinux2010_x86_64.whl (968.7 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0-cp36-cp36m-manylinux2010_i686.whl (807.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

PyKrige-1.5.0-cp36-cp36m-manylinux1_x86_64.whl (968.7 kB view details)

Uploaded CPython 3.6m

PyKrige-1.5.0-cp36-cp36m-manylinux1_i686.whl (807.3 kB view details)

Uploaded CPython 3.6m

PyKrige-1.5.0-cp36-cp36m-macosx_10_9_x86_64.whl (447.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

PyKrige-1.5.0-cp35-cp35m-win_amd64.whl (439.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

PyKrige-1.5.0-cp35-cp35m-win32.whl (409.2 kB view details)

Uploaded CPython 3.5m Windows x86

PyKrige-1.5.0-cp35-cp35m-manylinux2010_x86_64.whl (957.9 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0-cp35-cp35m-manylinux2010_i686.whl (798.4 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

PyKrige-1.5.0-cp35-cp35m-manylinux1_x86_64.whl (957.8 kB view details)

Uploaded CPython 3.5m

PyKrige-1.5.0-cp35-cp35m-manylinux1_i686.whl (798.4 kB view details)

Uploaded CPython 3.5m

PyKrige-1.5.0-cp35-cp35m-macosx_10_9_x86_64.whl (443.0 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file PyKrige-1.5.0.tar.gz.

File metadata

  • Download URL: PyKrige-1.5.0.tar.gz
  • Upload date:
  • Size: 942.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0.tar.gz
Algorithm Hash digest
SHA256 f5b96f8f7244a4e0357b97130a42cf36042300458f238ce3a534d0580f71b121
MD5 a5071c2833c1a3f278122d57437c6a07
BLAKE2b-256 567b238c2f2cf9f55c95e4c10a2f30d00c260bd0f3319d9b1ebd40dc8d68de33

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 443.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 904bd7f7a004c19707738ca21b5d71f193c7c7269f1b61063813ff8d030d5251
MD5 e5702ef6d605575ea14b74b50c5824ab
BLAKE2b-256 f6df321f7360a9625fb4d0f131d0c28f8d2fc6fbabe6af0940b535f0bb0ad713

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 413.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 86fdb0a311197aab411f7b4c15dc32d97d5e9cc2f45bf7cdc0f47bb544e3bdd5
MD5 69484247c2b580c24176ca62b4302eca
BLAKE2b-256 719b991dfe3d3377d560265c44dddf20ae792d7126fd23efb5e9b4b10048ec11

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d719615fb61cccb3f038e5c529bb7c3bd88a7fbc73b4f62bba015836afb26a8a
MD5 ed208b2cf95dc81d0f0232dde9e17523
BLAKE2b-256 96d90032a7563ec6dd3300bef765f29c5c4c75fda2f3d1f2d9754046e4ff65c7

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 866.3 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e6102b5f1f8ed841d46141a0695ddc201555c6c6fc640a504c8ccf1e06389463
MD5 2d1161ccaaff4d20a63bd18f21eeb4fb
BLAKE2b-256 e87146e283c0709faec4133f5bf63f65eda317bc0fcbb6071e580d8005f09c23

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 24fd966d3556eec15c38dc671b789a52411d5b916d72faa03ca0d415503a0ea8
MD5 bf1e0ff80b2d447fe650b24100d54cac
BLAKE2b-256 b27d6a85bd84b8a9def7b84a91afa74741392ac53d0071ee9a9e8916ca915a08

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 866.3 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ee31d3ff060c6274a6b34a95dd7786051102ead9edc4e74e7bd8c7761abba730
MD5 add019420fefdd1e5fd10479ce3675ef
BLAKE2b-256 721995a23c1c72e1be06750bdbebf2caa23df7c7b5fdf738648634c0c0b44094

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 449.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for PyKrige-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0debdbd63539b00ea6d9532544809d8c9ba6d9405de33912726a5bab52303452
MD5 ea48a0fec8b9eccd546c5976d4c28a5c
BLAKE2b-256 640a05cab3eedaebb2d6cc6e698c4a93511bc40163a8ff750625afd1d9a282d9

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 441.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fa0a3c5731cb49fc31ab872c6d9b6e2b71fe811d9e658f311476e907c990a765
MD5 d32463ff65b9dd88ee26900128a6a487
BLAKE2b-256 b8f685b72ad2dc917b35c1a5ecec4aa9fa5066f1ccc5e8090adc2c9aa13edb28

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 410.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 142e66d395c80ef0238dbea45129866b37a0ea22668d9f8cfbf6de3dd007fabf
MD5 daeb75b0e703f336170a84e5095ed206
BLAKE2b-256 f263beb68baf6a0b539d543c35911d6dc8331e39ea429be896dd90f90a0719bf

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 968.8 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 09ef8b0db88805d74c966d00af7dc41f58fc11160648e38ea2269f6afec2ad9f
MD5 e5b5bb2b9ac010d4506442c1167d2d39
BLAKE2b-256 62ed046181fcf1babc064f61a5c6e456f9ee8295a2e5fd368b3c59f60021387a

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 808.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 ce7ce1d5fd3fcfa6d5c9cfc2c3237dd31b6cda2896291b6e1ddcacae0daec41b
MD5 c9f3a7b84990110d22f82d2dec1fff64
BLAKE2b-256 71860bf61145327ad610686407c8f40ac09e98b38834da64a59db194cdc4f1bd

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 968.8 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 03612abcc282072e695a7091c899b6f0302f4dd01f031e6dae71fc02dd8e7391
MD5 723fcaa8289e0bbd4f0876852e508dd5
BLAKE2b-256 6a07b2511061fe991faade45bb7e79960d67071ae1c2f2bbe1d523d067b51ea1

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 808.5 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 34e2498fda0afd4dd260c9bf772cb97aa7b87c1a62ea5601193ed4c9347eb10b
MD5 0b1e611741c7e4570a8037d9ae35f48f
BLAKE2b-256 ebe5c402c2b487c1cbd9037687707dded117b29971b1cfa852ec6a94452e3835

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 447.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for PyKrige-1.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e7bfd1386b4176ff5f61aff04cbcf905c11fc5a0045e2bd8a740c682e444e95
MD5 8d618cfd341a7e91375aa905682e8791
BLAKE2b-256 cc09a149a34b6555b66d8c75d1d630783055ae4d463731faccd2f7116d45bbc5

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 441.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 39ce2756e686ce629c687c92c32d34a07f86540f1fe7a01ae4a28c80ca83b0ab
MD5 b866773d590ef49ea399b7ee32cb375e
BLAKE2b-256 25585417d2d388e1c64030814408142b26004b4ca4c172759e2819097054d17b

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 410.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 653edc6fa26acc74dcddd180223ab1df5c12c8f362129eeffef80022a28f9c07
MD5 c5297a01bccc4107a62b123b296f5125
BLAKE2b-256 fd1f5756552e177971cce1d546ddb71d8b37316321c2fd2c60856d47a9d82129

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 968.7 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a1e2b89fad2e8d61bae19e420eafb81cea15378bc8038f80626f328fbfbb5dd1
MD5 b8f5252dc452498494904ea67387705b
BLAKE2b-256 9416a37be67b6eff817a44b548e1c4012df6201ea7fc0f9d59bc1a455e6924f9

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 807.3 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d42d0cafeddc78d74af5ae70dabfa6bfe976abc7d28294041c800d59f37f50a0
MD5 d91d07a74f8d6a38d0d99f0b3aada802
BLAKE2b-256 bf7d900a3de15e9f3c0899a063f44b53bfa8d49271b9b04e7b954c1da96ca312

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 968.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 97a502386d9e480079b3fc6379003ee515c1c3960055c6409b762c4655c7e83e
MD5 bf7f00a1165ee4ff5c16f9980f99e13f
BLAKE2b-256 5fbf577d7880a07cb39497793803618b02967a196986f7ed993f35890fe01ef9

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 807.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0e3e0c9573461a50446b323a06d50ce7617bb093c34eafaa6f52fbe6336029a9
MD5 45b723620da4d7b0e0fc90852764d70a
BLAKE2b-256 4c0d1705c71dad2677bbf6eabc99a3406a56387cc9a3c1e5b16bb2811dd469b8

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 447.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.8

File hashes

Hashes for PyKrige-1.5.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f644756c05e4222c086a24f70cd7b2a5b654129c9d0c8e0d93b6092caf7b24ea
MD5 fa7b08e04df5b37d117c90e094e3aa13
BLAKE2b-256 759fcca4788fceb5aec4e6fafa48657d50b4b532d50996ea80c26e26191d474a

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 439.6 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 9f97d4f397ec093d58a3a73127fb72ea9b0027ad31992098aef078f541cdc49c
MD5 95c7c4f232c6faa4fb984ebb14372a3a
BLAKE2b-256 a7af9564fcb1e28f3707f4552c3bb429a8c51c54514de20b97b7a4a209780769

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 409.2 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 2e8d8feb8e65d4896f560f9bddb2d5935accd41b18327faa5e20ccf953cb21da
MD5 df379774a47473891d3cc1f6a1d8e98e
BLAKE2b-256 e491f2ffd48c724a850e557f7f535bfdf7b1fbf4a44e9ace5f845a1b8edfb628

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 957.9 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0d96ac59343ae9e4c52dda345e851c76e841501cff4f526bb8d07a3c8f9664a3
MD5 de11ffa2364da65c783416d9e4c5d400
BLAKE2b-256 33ca00405ce73fa08a29469d137e00e6eed33c2b220457ccdaca132f71ebac59

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 798.4 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d7ccca77531adb97a256bbae2ef0494f3feb1964e50a1997d66a09f17995c65a
MD5 8cbd9e161b4686113d8d4ebf3e942610
BLAKE2b-256 63fe3a41f6e8914eeeb692afd2270d74211698f3ee7fda9a24ab9289b39da6a9

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 957.8 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e272f4ef87c63c5be9a32faf04f04c51b6f79c3ec23569b98f2937f4162bf305
MD5 bf6cb8fb281be5cd8096f6a9d3cee621
BLAKE2b-256 667de1a7970957fa6b898b1e2adf5c45b80a4f7900ff575e087e69faaa85ca7b

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 798.4 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fc952450602cc29c9a5e9feb3539f405ec00405d0a9934526b5ae94400ba6f77
MD5 40aa32f8fc3cf51da6ef7180bc4146c9
BLAKE2b-256 27862879db733acbc8b83eae999be7b4c304d9e692093c79c114c0dfb7a5638d

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 443.0 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.5.4

File hashes

Hashes for PyKrige-1.5.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 105d975f0535913e42245910b0b83b394b85a825f978096e00d5bf305a0f9fc5
MD5 111795c55c01b7400d0f5714ae020e7f
BLAKE2b-256 3719c3511ed2fe8c31c794ddebc48aa1e3c16a2ccf71d7bcb748ed1c722cb1c8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page