Skip to main content

Kriging Toolkit for Python.

Project description

https://badge.fury.io/py/PyKrige.svg https://img.shields.io/conda/vn/conda-forge/pykrige.svg Documentation Status https://travis-ci.com/GeoStat-Framework/PyKrige.svg?branch=master
PyKrige

Kriging Toolkit for Python.

Purpose

The code supports 2D and 3D ordinary and universal kriging. Standard variogram models (linear, power, spherical, gaussian, exponential) are built in, but custom variogram models can also be used. The 2D universal kriging code currently supports regional-linear, point-logarithmic, and external drift terms, while the 3D universal kriging code supports a regional-linear drift term in all three spatial dimensions. Both universal kriging classes also support generic ‘specified’ and ‘functional’ drift capabilities. With the ‘specified’ drift capability, the user may manually specify the values of the drift(s) at each data point and all grid points. With the ‘functional’ drift capability, the user may provide callable function(s) of the spatial coordinates that define the drift(s). The package includes a module that contains functions that should be useful in working with ASCII grid files (*.asc).

See the documentation at http://pykrige.readthedocs.io/ for more details.

Installation

PyKrige requires Python 3.5+ as well as numpy, scipy. It can be installed from PyPi with,

pip install pykrige

scikit-learn is an optional dependency needed for parameter tuning and regression kriging. matplotlib is an optional dependency needed for plotting.

If you use conda, PyKrige can be installed from the conda-forge channel with,

conda install -c conda-forge pykrige

Ordinary Kriging Example

First we will create a 2D dataset together with the associated x, y grids,

import numpy as np
import pykrige.kriging_tools as kt
from pykrige.ok import OrdinaryKriging

data = np.array([[0.3, 1.2, 0.47],
                 [1.9, 0.6, 0.56],
                 [1.1, 3.2, 0.74],
                 [3.3, 4.4, 1.47],
                 [4.7, 3.8, 1.74]])

gridx = np.arange(0.0, 5.5, 0.5)
gridy = np.arange(0.0, 5.5, 0.5)

# Create the ordinary kriging object. Required inputs are the X-coordinates of
# the data points, the Y-coordinates of the data points, and the Z-values of the
# data points. If no variogram model is specified, defaults to a linear variogram
# model. If no variogram model parameters are specified, then the code automatically
# calculates the parameters by fitting the variogram model to the binned
# experimental semivariogram. The verbose kwarg controls code talk-back, and
# the enable_plotting kwarg controls the display of the semivariogram.
OK = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='linear',
                     verbose=False, enable_plotting=False)

# Creates the kriged grid and the variance grid. Allows for kriging on a rectangular
# grid of points, on a masked rectangular grid of points, or with arbitrary points.
# (See OrdinaryKriging.__doc__ for more information.)
z, ss = OK.execute('grid', gridx, gridy)

# Writes the kriged grid to an ASCII grid file.
kt.write_asc_grid(gridx, gridy, z, filename="output.asc")

Universal Kriging Example

from pykrige.uk import UniversalKriging
import numpy as np

data = np.array([[0.3, 1.2, 0.47],
                 [1.9, 0.6, 0.56],
                 [1.1, 3.2, 0.74],
                 [3.3, 4.4, 1.47],
                 [4.7, 3.8, 1.74]])

gridx = np.arange(0.0, 5.5, 0.5)
gridy = np.arange(0.0, 5.5, 0.5)

# Create the ordinary kriging object. Required inputs are the X-coordinates of
# the data points, the Y-coordinates of the data points, and the Z-values of the
# data points. Variogram is handled as in the ordinary kriging case.
# drift_terms is a list of the drift terms to include; currently supported terms
# are 'regional_linear', 'point_log', and 'external_Z'. Refer to
# UniversalKriging.__doc__ for more information.
UK = UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='linear',
                      drift_terms=['regional_linear'])

# Creates the kriged grid and the variance grid. Allows for kriging on a rectangular
# grid of points, on a masked rectangular grid of points, or with arbitrary points.
# (See UniversalKriging.__doc__ for more information.)
z, ss = UK.execute('grid', gridx, gridy)

Three-Dimensional Kriging Example

from pykrige.ok3d import OrdinaryKriging3D
from pykrige.uk3d import UniversalKriging3D
import numpy as np

data = np.array([[0.1, 0.1, 0.3, 0.9],
                                 [0.2, 0.1, 0.4, 0.8],
                                 [0.1, 0.3, 0.1, 0.9],
                                 [0.5, 0.4, 0.4, 0.5],
                                 [0.3, 0.3, 0.2, 0.7]])

gridx = np.arange(0.0, 0.6, 0.05)
gridy = np.arange(0.0, 0.6, 0.01)
gridz = np.arange(0.0, 0.6, 0.1)

# Create the 3D ordinary kriging object and solves for the three-dimension kriged
# volume and variance. Refer to OrdinaryKriging3D.__doc__ for more information.
ok3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                 variogram_model='linear')
k3d, ss3d = ok3d.execute('grid', gridx, gridy, gridz)

# Create the 3D universal kriging object and solves for the three-dimension kriged
# volume and variance. Refer to UniversalKriging3D.__doc__ for more information.
uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                  variogram_model='linear', drift_terms=['regional_linear'])
k3d, ss3d = uk3d.execute('grid', gridx, gridy, gridz)

# To use the generic 'specified' drift term, the user must provide the drift values
# at each data point and at every grid point. The following example is equivalent to
# using a linear drift in all three spatial dimensions. Refer to
# UniversalKriging3D.__doc__ for more information.
zg, yg, xg = np.meshgrid(gridz, gridy, gridx, indexing='ij')
uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                  variogram_model='linear', drift_terms=['specified'],
                                                  specified_drift=[data[:, 0], data[:, 1]])
k3d, ss3d = uk3d.execute('grid', gridx, gridy, gridz, specified_drift_arrays=[xg, yg, zg])

# To use the generic 'functional' drift term, the user must provide a callable
# function that takes only the spatial dimensions as arguments. The following example
# is equivalent to using a linear drift only in the x-direction. Refer to
# UniversalKriging3D.__doc__ for more information.
func = lambda x, y, z: x
uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                  variogram_model='linear', drift_terms=['functional'],
                                                  functional_drift=[func])
k3d, ss3d = uk3d.execute('grid', gridx, gridy, gridz)

# Note that the use of the 'specified' and 'functional' generic drift capabilities is
# essentially identical in the two-dimensional universal kriging class (except for a
# difference in the number of spatial coordinates for the passed drift functions).
# See UniversalKriging.__doc__ for more information.

GSTools covariance models

You can also use GSTools covariance models as input for the variogram_model in the PyKrige routines:

import numpy as np
from gstools import Gaussian
from pykrige.ok import OrdinaryKriging
from matplotlib import pyplot as plt

# conditioning data
data = np.array([[0.3, 1.2, 0.47],
                 [1.9, 0.6, 0.56],
                 [1.1, 3.2, 0.74],
                 [3.3, 4.4, 1.47],
                 [4.7, 3.8, 1.74]])
# grid definition for output field
gridx = np.arange(0.0, 5.5, 0.1)
gridy = np.arange(0.0, 6.5, 0.1)
# a GSTools based covariance model
cov_model = Gaussian(dim=2, len_scale=1, anis=0.2, angles=-0.5, var=0.5, nugget=0.1)
# ordinary kriging with pykrige
OK1 = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], cov_model)
z1, ss1 = OK1.execute('grid', gridx, gridy)
plt.imshow(z1, origin="lower")
plt.show()

Which gives:

https://raw.githubusercontent.com/GeoStat-Framework/GSTools/master/docs/source/pics/20_pykrige.png

Have a look at the documentation about the Covariance Model of GSTools.

Kriging Parameters Tuning

A scikit-learn compatible API for parameter tuning by cross-validation is exposed in sklearn.model_selection.GridSearchCV. See the Krige CV example for a more practical illustration.

Regression Kriging

Regression kriging can be performed with pykrige.rk.RegressionKriging. This class takes as parameters a scikit-learn regression model, and details of either either the OrdinaryKriging or the UniversalKriging class, and performs a correction steps on the ML regression prediction.

A demonstration of the regression kriging is provided in the corresponding example.

License

PyKrige uses the BSD 3-Clause License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyKrige-1.5.0rc1.tar.gz (942.5 kB view details)

Uploaded Source

Built Distributions

PyKrige-1.5.0rc1-cp38-cp38-win_amd64.whl (443.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyKrige-1.5.0rc1-cp38-cp38-win32.whl (413.4 kB view details)

Uploaded CPython 3.8 Windows x86

PyKrige-1.5.0rc1-cp38-cp38-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0rc1-cp38-cp38-manylinux2010_i686.whl (866.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

PyKrige-1.5.0rc1-cp38-cp38-manylinux1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8

PyKrige-1.5.0rc1-cp38-cp38-manylinux1_i686.whl (866.3 kB view details)

Uploaded CPython 3.8

PyKrige-1.5.0rc1-cp38-cp38-macosx_10_9_x86_64.whl (449.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyKrige-1.5.0rc1-cp37-cp37m-win_amd64.whl (441.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyKrige-1.5.0rc1-cp37-cp37m-win32.whl (410.6 kB view details)

Uploaded CPython 3.7m Windows x86

PyKrige-1.5.0rc1-cp37-cp37m-manylinux2010_x86_64.whl (968.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0rc1-cp37-cp37m-manylinux2010_i686.whl (808.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

PyKrige-1.5.0rc1-cp37-cp37m-manylinux1_x86_64.whl (968.8 kB view details)

Uploaded CPython 3.7m

PyKrige-1.5.0rc1-cp37-cp37m-manylinux1_i686.whl (808.4 kB view details)

Uploaded CPython 3.7m

PyKrige-1.5.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl (447.3 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyKrige-1.5.0rc1-cp36-cp36m-win_amd64.whl (441.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyKrige-1.5.0rc1-cp36-cp36m-win32.whl (410.6 kB view details)

Uploaded CPython 3.6m Windows x86

PyKrige-1.5.0rc1-cp36-cp36m-manylinux2010_x86_64.whl (968.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0rc1-cp36-cp36m-manylinux2010_i686.whl (807.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

PyKrige-1.5.0rc1-cp36-cp36m-manylinux1_x86_64.whl (968.6 kB view details)

Uploaded CPython 3.6m

PyKrige-1.5.0rc1-cp36-cp36m-manylinux1_i686.whl (807.2 kB view details)

Uploaded CPython 3.6m

PyKrige-1.5.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl (447.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

PyKrige-1.5.0rc1-cp35-cp35m-win_amd64.whl (439.5 kB view details)

Uploaded CPython 3.5m Windows x86-64

PyKrige-1.5.0rc1-cp35-cp35m-win32.whl (409.2 kB view details)

Uploaded CPython 3.5m Windows x86

PyKrige-1.5.0rc1-cp35-cp35m-manylinux2010_x86_64.whl (957.8 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0rc1-cp35-cp35m-manylinux2010_i686.whl (798.3 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

PyKrige-1.5.0rc1-cp35-cp35m-manylinux1_x86_64.whl (957.8 kB view details)

Uploaded CPython 3.5m

PyKrige-1.5.0rc1-cp35-cp35m-manylinux1_i686.whl (798.3 kB view details)

Uploaded CPython 3.5m

PyKrige-1.5.0rc1-cp35-cp35m-macosx_10_9_x86_64.whl (442.9 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file PyKrige-1.5.0rc1.tar.gz.

File metadata

  • Download URL: PyKrige-1.5.0rc1.tar.gz
  • Upload date:
  • Size: 942.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1.tar.gz
Algorithm Hash digest
SHA256 1a8b26c06ba7ffea9e907205384b8db0dfe41630d0bae3e8d02a4216bf15adca
MD5 a68e95b4cb50eb7c15ec04618a74e92b
BLAKE2b-256 b297ff6de7bded0eb6d435213a8b88d1cafec19bad9482e7ffc7330050cdffca

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 443.4 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 857f6626faf283bbe75fbbe4c4f1205766e142d0b1e7ee0af7b8da0ec6d20994
MD5 434eaa1fe91ef524624f49190128dc98
BLAKE2b-256 059c89f7a93ef1cbe8f1bdfd63658d80f6ab4d5736b3b01c48d48b68926a39eb

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 413.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d27b75c8bc20c91246915db5c62cbc275be84fc10ffa7f043ec4ff6816571f46
MD5 30e4857805e1d5778a94bb44b818b55f
BLAKE2b-256 38d6fbebe083a64a8ef8eff762ba43cee9973a7b1bc50165f0bd94ead166d070

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4a3e6a00373f1530bb77751813598372470e875e92eef71d51db572d0c3874d5
MD5 da0cb2ca1a3d747b5c7c2be87b6641f0
BLAKE2b-256 6d4933a7bb2748c44718e0fe21d1040282d854b333e0ce68d7ca94c591502ac7

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 866.3 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9b6a7a705c6316e98d994e677fdf7c5c139bc3abd74aff82974756f15799a0be
MD5 c9706a6914e82c2cab9213ebb48ab748
BLAKE2b-256 3ed53339d1d24532833e50bcac2f70bab7a05ef229565ba95817a66e4a0e0e03

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c5570aa3641e1ddaf790777673513096f9cb7ad6806639118794f62cedf545df
MD5 002c730bb4ea9423caaf15f840e14283
BLAKE2b-256 fc5bc7cd63e3d3c0b16ae6e6b661ea2337d6ee7c5f3c3980bbb6d50ed50a5f3f

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 866.3 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5bf6dedaaaa5a72476560eef099dfbde3b73279b50c88cf3742f63e30d900081
MD5 fb94e7de66222e0cf841d3316d39155e
BLAKE2b-256 57579f2a12e21882e8b71594b341f88fcffc26b4d1b0362a66bccd9390d2f92e

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 449.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for PyKrige-1.5.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4598a6fe7d549de0d5e52c0403a4b16fdb8e009c91ceab4028c00ae825337b28
MD5 8658c3909028e59cbdae7189fb1569ed
BLAKE2b-256 2349e3834f1929ae2a99ae290236a6885a15c1f6fb4d8af5306bf362da12d8cd

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 441.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 a0d069a7c9f2e73c3b9cfec19d3ba7f6ac79bff2c90ada947b94a2078dd42ce6
MD5 f19a7102e26c16d5e5ae1f7091a4c8a4
BLAKE2b-256 8e2a6f850e7663cef9f5d323182ceff420905de00ec881ccf2f9749137d875f9

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 410.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3dc2c6aacb08849ef4a6c592187eea7ff2e363cb5328cc476636807bad1758ca
MD5 44e401a892ae26577068d5519e263dab
BLAKE2b-256 30c101bc5188d8b81046cdbde43bbda1750b2f24b44e1717e36d137e3c4eea5e

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 968.8 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4a4faf07dc7ad4f6b8ac2e6ae7b08555867e7dfd7f3f877f61f45c0a8bf9c879
MD5 dfa306ddad3561a4b6262d560afd5a82
BLAKE2b-256 46880b45bb5c8e8d1a23c9316f27d84a4b6914c9be9624a2173be3b222c8bb47

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 808.5 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 26a6a9bf353a84f88c25e8beff4c938316110e90e025a496bf5c1d4cc3fe4e19
MD5 3418909a8cb214b3c2d6836fba1aea3a
BLAKE2b-256 8f4b0470cdd7af05b4667bb403e38b55474ed4456ab784bdb361b8bef571aac6

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 968.8 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f2e1b675e1ab7490f1c74800848c57e81e07e96c47fa100d7438b09c220e1865
MD5 b780706869aca1f7be820e6ce43c4d37
BLAKE2b-256 458f08f148e28cba06ee032cd72f93b64237fc048bdf297edc3799e60b4cb48d

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 808.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d655ae3b3590c7648a952c3a928fa7a062e41f98c95561bfdf772dc2d50196bc
MD5 177c456c859c3333232d557a7041b994
BLAKE2b-256 8d0126523988d2fb3d196576466e7b46bf0e651a77d7cffae5ca73ac71a67929

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 447.3 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for PyKrige-1.5.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8cb9f25b5fe9a783fbe8ddb75b8af5ee629e0eda6a0f0f6e4c2edc4faea67555
MD5 a7b3e09378b6b7ed0f58a16dbc5ab3be
BLAKE2b-256 a7a23faa550490abff16c1aa5adcd539484771dd7b6dc6099abb862c3bec6bbb

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 441.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 e07682442dbc9b78f6dd2dcfbf5529fa364530962d9035f1c76d5a164ce34ecb
MD5 12b8e7e500d151709b464e49a9f1928e
BLAKE2b-256 cc09ce6a1ff02899c01de639cb5eebe117916fcde7da202c34dd6a9ec114c1d1

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 410.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 a50456e876722a212f75622a492230eedf2a9664ffef11b6818c6cae616273d5
MD5 38754f9e8be50135017f57b8f013e010
BLAKE2b-256 f8f7f9c0e3dc2c90fe7fae9218901bb5e4a191f7ee27e6c40e6811b156aa3b9a

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 968.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e376486ca56bf3a41615443d901198dfc66fd89813de6d3d20f1a45e4c0b6feb
MD5 e46c4cb84d122b65df22a4b73e8ec801
BLAKE2b-256 0bce1f68ecbbe2ef538f62a51cb674a81d642fe9c17612fe507e3e3833ceb4fe

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 807.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bb4e7b1caa78f711454a2471681e18ab972302e67d46a0b4a4ca7c770d931f1c
MD5 9cdf3c0db20d44991aa512b50683f704
BLAKE2b-256 2bb657bf6e21cf6f73dbf6867e4c7665403f9ccdeca5d52ed87fe9e1dbf80d0a

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 968.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9581a51cd4366dc62e9fcbd8d9e580680708e6ca811df3f4f9ba88e3bef76603
MD5 773ce237e8d05f48e6be2189d0bfc861
BLAKE2b-256 e603d9707bb4174ee11942e29fe966891026319caefdca47ae4c90781439e128

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 807.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 cafefdfc826b4be6cce5f094d759ce370babd43ddf2ad63a99f7748ac1e95e96
MD5 6f2d4d4e2534f3e5edf4d815eedd4ccb
BLAKE2b-256 b7e59f94ae6b2915e12ae3df2308077cd039174ad035adc87e27e531d968157a

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 447.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.8

File hashes

Hashes for PyKrige-1.5.0rc1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 64790ba9c31ce7814efba4fe5e02dad651fa0ed6f6ebd2a357e5cbcc1ca7cd10
MD5 71d77c246f2c4e09e9adef9092be8bc7
BLAKE2b-256 e94461897c206e477b39ea8326d55a9986e5d13f4365c5b16667b2aad7d8fffc

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 439.5 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 18cb8f56b7c06c2ee316517b6e2b98d9e4381ac8bc93019008514ba41338e5a3
MD5 31a415ea270206e0f5e05cffd8dc7b05
BLAKE2b-256 4b3a6d8bb73ef90fbae5fbc7944c2ae1e387aa768b462aac9d9dc02357cf3d02

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 409.2 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 72b2001dda4a6bf12975fdbc30500411fce495a088a2255011b66b59a5eac07b
MD5 f053725cb3c8dc9c3d566f4f913341b3
BLAKE2b-256 b42437f5a0307267838bc320d8cf27bdd8e18a0cfeead9b8581e87d111b5314a

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 957.8 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 81b9c37d9a68d1d479f24879491248eb825cbce2702b81353a612fc6f8e1acb5
MD5 97ff44b95f7b8c0dd51882d4c43a3fdb
BLAKE2b-256 6e96a01a6b0106e2b3e4b55df29bf86ed60581ec7d14dd77b438a2aaa4b02576

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 798.3 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d79b10aeba1b93dad1e1e01eade496be5db88fbbbe4ece61fbf99e33c38c51ad
MD5 a9b5a3abe2e68f24bc63f0898c62353b
BLAKE2b-256 97f8caaf412ef65ad4f192de2d090dc4df3d1a12ef47614d750838445d40f40b

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 957.8 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e1fedf1822134944a350ce7700cd9e86684c15729d1db23c006614308e23868f
MD5 7a417b611ae7c818cadec975f647c250
BLAKE2b-256 4be38e38ef5276dbf51ef59b4a5480bbaab0b039dd4cc92c09911fef7aaeea36

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 798.3 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 686dd43308937850588099e9e29f4280af07b34a8debcfede912189dc4fc91a9
MD5 797c736f131b6a446fce491ef059f837
BLAKE2b-256 5c965f418a3965e8c85d8607066b2fa5265a8924ada910d18ca57d038b80c7f1

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 442.9 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.5.4

File hashes

Hashes for PyKrige-1.5.0rc1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe0309bfa8a24deef30e111806fd9ea545ebb0ab213f9f2661da7da05391a6bd
MD5 a2e6314a92cca8db8d284e9a927302b8
BLAKE2b-256 546319fa07b4ae9ad669324dda230843a537a8bd9a067d7033f1964c0d0188df

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page