Skip to main content

Kriging Toolkit for Python.

Project description

https://zenodo.org/badge/DOI/10.5281/zenodo.3738604.svg https://badge.fury.io/py/PyKrige.svg https://img.shields.io/conda/vn/conda-forge/pykrige.svg https://travis-ci.com/GeoStat-Framework/PyKrige.svg?branch=master https://coveralls.io/repos/github/GeoStat-Framework/PyKrige/badge.svg?branch=master Documentation Status https://img.shields.io/badge/code%20style-black-000000.svg
PyKrige

Kriging Toolkit for Python.

Purpose

The code supports 2D and 3D ordinary and universal kriging. Standard variogram models (linear, power, spherical, gaussian, exponential) are built in, but custom variogram models can also be used. The 2D universal kriging code currently supports regional-linear, point-logarithmic, and external drift terms, while the 3D universal kriging code supports a regional-linear drift term in all three spatial dimensions. Both universal kriging classes also support generic ‘specified’ and ‘functional’ drift capabilities. With the ‘specified’ drift capability, the user may manually specify the values of the drift(s) at each data point and all grid points. With the ‘functional’ drift capability, the user may provide callable function(s) of the spatial coordinates that define the drift(s). The package includes a module that contains functions that should be useful in working with ASCII grid files (*.asc).

See the documentation at http://pykrige.readthedocs.io/ for more details.

Installation

PyKrige requires Python 3.5+ as well as numpy, scipy. It can be installed from PyPi with,

pip install pykrige

scikit-learn is an optional dependency needed for parameter tuning and regression kriging. matplotlib is an optional dependency needed for plotting.

If you use conda, PyKrige can be installed from the conda-forge channel with,

conda install -c conda-forge pykrige

Ordinary Kriging Example

First we will create a 2D dataset together with the associated x, y grids,

import numpy as np
import pykrige.kriging_tools as kt
from pykrige.ok import OrdinaryKriging

data = np.array([[0.3, 1.2, 0.47],
                 [1.9, 0.6, 0.56],
                 [1.1, 3.2, 0.74],
                 [3.3, 4.4, 1.47],
                 [4.7, 3.8, 1.74]])

gridx = np.arange(0.0, 5.5, 0.5)
gridy = np.arange(0.0, 5.5, 0.5)

# Create the ordinary kriging object. Required inputs are the X-coordinates of
# the data points, the Y-coordinates of the data points, and the Z-values of the
# data points. If no variogram model is specified, defaults to a linear variogram
# model. If no variogram model parameters are specified, then the code automatically
# calculates the parameters by fitting the variogram model to the binned
# experimental semivariogram. The verbose kwarg controls code talk-back, and
# the enable_plotting kwarg controls the display of the semivariogram.
OK = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='linear',
                     verbose=False, enable_plotting=False)

# Creates the kriged grid and the variance grid. Allows for kriging on a rectangular
# grid of points, on a masked rectangular grid of points, or with arbitrary points.
# (See OrdinaryKriging.__doc__ for more information.)
z, ss = OK.execute('grid', gridx, gridy)

# Writes the kriged grid to an ASCII grid file.
kt.write_asc_grid(gridx, gridy, z, filename="output.asc")

Universal Kriging Example

from pykrige.uk import UniversalKriging
import numpy as np

data = np.array([[0.3, 1.2, 0.47],
                 [1.9, 0.6, 0.56],
                 [1.1, 3.2, 0.74],
                 [3.3, 4.4, 1.47],
                 [4.7, 3.8, 1.74]])

gridx = np.arange(0.0, 5.5, 0.5)
gridy = np.arange(0.0, 5.5, 0.5)

# Create the ordinary kriging object. Required inputs are the X-coordinates of
# the data points, the Y-coordinates of the data points, and the Z-values of the
# data points. Variogram is handled as in the ordinary kriging case.
# drift_terms is a list of the drift terms to include; currently supported terms
# are 'regional_linear', 'point_log', and 'external_Z'. Refer to
# UniversalKriging.__doc__ for more information.
UK = UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model='linear',
                      drift_terms=['regional_linear'])

# Creates the kriged grid and the variance grid. Allows for kriging on a rectangular
# grid of points, on a masked rectangular grid of points, or with arbitrary points.
# (See UniversalKriging.__doc__ for more information.)
z, ss = UK.execute('grid', gridx, gridy)

Three-Dimensional Kriging Example

from pykrige.ok3d import OrdinaryKriging3D
from pykrige.uk3d import UniversalKriging3D
import numpy as np

data = np.array([[0.1, 0.1, 0.3, 0.9],
                                 [0.2, 0.1, 0.4, 0.8],
                                 [0.1, 0.3, 0.1, 0.9],
                                 [0.5, 0.4, 0.4, 0.5],
                                 [0.3, 0.3, 0.2, 0.7]])

gridx = np.arange(0.0, 0.6, 0.05)
gridy = np.arange(0.0, 0.6, 0.01)
gridz = np.arange(0.0, 0.6, 0.1)

# Create the 3D ordinary kriging object and solves for the three-dimension kriged
# volume and variance. Refer to OrdinaryKriging3D.__doc__ for more information.
ok3d = OrdinaryKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                 variogram_model='linear')
k3d, ss3d = ok3d.execute('grid', gridx, gridy, gridz)

# Create the 3D universal kriging object and solves for the three-dimension kriged
# volume and variance. Refer to UniversalKriging3D.__doc__ for more information.
uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                  variogram_model='linear', drift_terms=['regional_linear'])
k3d, ss3d = uk3d.execute('grid', gridx, gridy, gridz)

# To use the generic 'specified' drift term, the user must provide the drift values
# at each data point and at every grid point. The following example is equivalent to
# using a linear drift in all three spatial dimensions. Refer to
# UniversalKriging3D.__doc__ for more information.
zg, yg, xg = np.meshgrid(gridz, gridy, gridx, indexing='ij')
uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                  variogram_model='linear', drift_terms=['specified'],
                                                  specified_drift=[data[:, 0], data[:, 1]])
k3d, ss3d = uk3d.execute('grid', gridx, gridy, gridz, specified_drift_arrays=[xg, yg, zg])

# To use the generic 'functional' drift term, the user must provide a callable
# function that takes only the spatial dimensions as arguments. The following example
# is equivalent to using a linear drift only in the x-direction. Refer to
# UniversalKriging3D.__doc__ for more information.
func = lambda x, y, z: x
uk3d = UniversalKriging3D(data[:, 0], data[:, 1], data[:, 2], data[:, 3],
                                                  variogram_model='linear', drift_terms=['functional'],
                                                  functional_drift=[func])
k3d, ss3d = uk3d.execute('grid', gridx, gridy, gridz)

# Note that the use of the 'specified' and 'functional' generic drift capabilities is
# essentially identical in the two-dimensional universal kriging class (except for a
# difference in the number of spatial coordinates for the passed drift functions).
# See UniversalKriging.__doc__ for more information.

GSTools covariance models

You can also use GSTools covariance models as input for the variogram_model in the PyKrige routines:

import numpy as np
from gstools import Gaussian
from pykrige.ok import OrdinaryKriging
from matplotlib import pyplot as plt

# conditioning data
data = np.array([[0.3, 1.2, 0.47],
                 [1.9, 0.6, 0.56],
                 [1.1, 3.2, 0.74],
                 [3.3, 4.4, 1.47],
                 [4.7, 3.8, 1.74]])
# grid definition for output field
gridx = np.arange(0.0, 5.5, 0.1)
gridy = np.arange(0.0, 6.5, 0.1)
# a GSTools based covariance model
cov_model = Gaussian(dim=2, len_scale=1, anis=0.2, angles=-0.5, var=0.5, nugget=0.1)
# ordinary kriging with pykrige
OK1 = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], cov_model)
z1, ss1 = OK1.execute('grid', gridx, gridy)
plt.imshow(z1, origin="lower")
plt.show()

Which gives:

https://raw.githubusercontent.com/GeoStat-Framework/GSTools/master/docs/source/pics/20_pykrige.png

Have a look at the documentation about the Covariance Model of GSTools.

Kriging Parameters Tuning

A scikit-learn compatible API for parameter tuning by cross-validation is exposed in sklearn.model_selection.GridSearchCV. See the Krige CV example for a more practical illustration.

Regression Kriging

Regression kriging can be performed with pykrige.rk.RegressionKriging. This class takes as parameters a scikit-learn regression model, and details of either either the OrdinaryKriging or the UniversalKriging class, and performs a correction steps on the ML regression prediction.

A demonstration of the regression kriging is provided in the corresponding example.

License

PyKrige uses the BSD 3-Clause License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyKrige-1.5.0rc2.tar.gz (942.9 kB view details)

Uploaded Source

Built Distributions

PyKrige-1.5.0rc2-cp38-cp38-win_amd64.whl (443.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

PyKrige-1.5.0rc2-cp38-cp38-win32.whl (413.5 kB view details)

Uploaded CPython 3.8 Windows x86

PyKrige-1.5.0rc2-cp38-cp38-manylinux2010_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0rc2-cp38-cp38-manylinux2010_i686.whl (866.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

PyKrige-1.5.0rc2-cp38-cp38-manylinux1_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8

PyKrige-1.5.0rc2-cp38-cp38-manylinux1_i686.whl (866.4 kB view details)

Uploaded CPython 3.8

PyKrige-1.5.0rc2-cp38-cp38-macosx_10_9_x86_64.whl (449.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyKrige-1.5.0rc2-cp37-cp37m-win_amd64.whl (441.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

PyKrige-1.5.0rc2-cp37-cp37m-win32.whl (410.7 kB view details)

Uploaded CPython 3.7m Windows x86

PyKrige-1.5.0rc2-cp37-cp37m-manylinux2010_x86_64.whl (968.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0rc2-cp37-cp37m-manylinux2010_i686.whl (808.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

PyKrige-1.5.0rc2-cp37-cp37m-manylinux1_x86_64.whl (968.9 kB view details)

Uploaded CPython 3.7m

PyKrige-1.5.0rc2-cp37-cp37m-manylinux1_i686.whl (808.6 kB view details)

Uploaded CPython 3.7m

PyKrige-1.5.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl (447.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

PyKrige-1.5.0rc2-cp36-cp36m-win_amd64.whl (441.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

PyKrige-1.5.0rc2-cp36-cp36m-win32.whl (410.7 kB view details)

Uploaded CPython 3.6m Windows x86

PyKrige-1.5.0rc2-cp36-cp36m-manylinux2010_x86_64.whl (968.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0rc2-cp36-cp36m-manylinux2010_i686.whl (807.3 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

PyKrige-1.5.0rc2-cp36-cp36m-manylinux1_x86_64.whl (968.8 kB view details)

Uploaded CPython 3.6m

PyKrige-1.5.0rc2-cp36-cp36m-manylinux1_i686.whl (807.3 kB view details)

Uploaded CPython 3.6m

PyKrige-1.5.0rc2-cp36-cp36m-macosx_10_9_x86_64.whl (447.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

PyKrige-1.5.0rc2-cp35-cp35m-win_amd64.whl (439.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

PyKrige-1.5.0rc2-cp35-cp35m-win32.whl (409.3 kB view details)

Uploaded CPython 3.5m Windows x86

PyKrige-1.5.0rc2-cp35-cp35m-manylinux2010_x86_64.whl (957.9 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

PyKrige-1.5.0rc2-cp35-cp35m-manylinux2010_i686.whl (798.5 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

PyKrige-1.5.0rc2-cp35-cp35m-manylinux1_x86_64.whl (957.9 kB view details)

Uploaded CPython 3.5m

PyKrige-1.5.0rc2-cp35-cp35m-manylinux1_i686.whl (798.5 kB view details)

Uploaded CPython 3.5m

PyKrige-1.5.0rc2-cp35-cp35m-macosx_10_9_x86_64.whl (443.0 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file PyKrige-1.5.0rc2.tar.gz.

File metadata

  • Download URL: PyKrige-1.5.0rc2.tar.gz
  • Upload date:
  • Size: 942.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2.tar.gz
Algorithm Hash digest
SHA256 d392c01754f6b83db5d80b5c05031021f87f4c8e21fe26197bde1d586d374e35
MD5 b63a2b055125e2e56ccdd7921d9c5e3c
BLAKE2b-256 10afd933688de06d335bc899c3af6a1e3cc81d7c76ebabf0b0d85e3c3b28536d

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 443.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ab967f372040e4c49624092ddfe5124e3c17c0a865002e2d62b7fe5a3dd6c09a
MD5 ecd02731a7ff88acabcfe12cd4de94b2
BLAKE2b-256 71c1a55c96cb29c83070277069d2543b72d4d05cd2856a2e5b94fb47f2ad0860

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp38-cp38-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 413.5 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5548e8ef007bb5d5fdbf6e0171026c12a1bb7fb53f3c52711445da1e1cd97357
MD5 020c706247035790cadaecdeff4106c4
BLAKE2b-256 8deba5e1b1d59a3a78790a5704409138413717d809c9f42da1b98d3e3b63239f

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 85798e0554d18dc969d31e3223318ec8eab462086d109cb4436c4f3b51905667
MD5 0b62f47ff183e88f6b5349fc2b77e3fe
BLAKE2b-256 c83e419eb87e6401f86a632d5385fd06073e53a4f67a355ab239c097b3305868

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 866.4 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9db1b9ed78ac5948bc07a56913da92a5d83d5ac535325e0f9b2f9ed6c299bed3
MD5 baeac19601c5b1bf0068926d86d8ee4f
BLAKE2b-256 5fe62ab068f3d60373fd0b1bd125cf33a44a3d4d090be84c17805a2b0f7d79bc

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 36286a494fb52084a476df6c7e5cf973d8512547d0aad3af4f5725b595829691
MD5 92aa125ff466f4735495cd29a01e1020
BLAKE2b-256 dc0e837812f9ba2841435cba946efb1ca9a278064f6688ea7d2d544a7923e951

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 866.4 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5ea289097f6fc99c80da3e1515838053be50b54823939b7d50a8343d6a7643c2
MD5 72b8d6c54a9eeac492bbb4279e4c083a
BLAKE2b-256 44b6680b700a990b0d20ad36fb039e0aba3181271ec026a88a6d7bc049af283c

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 449.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for PyKrige-1.5.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93d98b0bdaa17e8ac2616475c8b74a89d06770f3fd594da7b46e73260f0261ad
MD5 23a17af4250acfc88455dfc1696e79c5
BLAKE2b-256 1a9a60ad82b9e6ec9923f5a1e4d397b5185b0d27f818b4110a1c7c5326d62fa0

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 441.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c698affd9df31d429627101725437159a8a4805c5a10b70593de14064ac03b85
MD5 3fd44e3ae0d94351d945a1630d8a2058
BLAKE2b-256 c74829c139b99cfe266c45b0065a567b7ad372f81fe4f0b86f11a9413a72ee32

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 410.7 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 e5456e0ca4e4aa9390014b306ae75b5e7ad0a54abfe06d5a23d1dd2c99db7366
MD5 7b03e4f88da8a1c92aab5d41e7c95065
BLAKE2b-256 91074d0139817dc4978399a02414973ab1d6140be648784b9bad1dc556dd0c34

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 968.9 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2dc5b39c474db70fd48186e29ef1de2c1654eb9bdd904f6346febff0e901662c
MD5 3f3c4559aec5bb978bfcdae1b0bf90f1
BLAKE2b-256 475082f1eb7602454354f9336f44adb9adfc40ab3c26ce0d0257b1269fa9fee9

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 808.6 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 96eead935e0f577d127a40a380db9d8fdab03bd6cec979f960c082cf7388384c
MD5 ff9d395e813007fd49cf3f2213fb6c15
BLAKE2b-256 1fb22811ec54ea99fd53fbfecc6d467680c64ad17890083c500fbf25e017ab47

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 968.9 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 942f519f0ff1ea466c4118bf56b3726a5da950ee7661cf5c0948e0518edce604
MD5 28a48bd901d00b5e2d793c0af3d2e21f
BLAKE2b-256 4c127b595528646fb999eb034dd3daa35bd3dd2cbc3b32d6f35566b38109b187

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 808.6 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 14001c81b3f4f82274ac106157f32ee6619e737bfaf4363d916a83d1acdd8c9f
MD5 a337c0190dce7f224b70a265cdd3f8c5
BLAKE2b-256 70d16eecbb0d6f5f3a071a94a271bdfebfaf98838ba2b7bcce4a777c44841fe6

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 447.4 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for PyKrige-1.5.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ca6e7fb7c6ef90df739b0bfa1dfaf7d6c65b6c7084cefb6c4428e7c8491bdb10
MD5 993ebb8c35374c798d7b3acfb31453bc
BLAKE2b-256 018b10419905bc316c4022f478321176e78e59378198205f272f4463186907ac

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 441.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 1aa299357fc60d515e415213d50d379df6505eceb1ca7e2bddb3834284d80a6d
MD5 93e4f47a132790bdaeb3ca98a59f23b9
BLAKE2b-256 b1218331a4269b866f9dfddaa59799b04b01ad24a6d2a9d4d0119d4b4f878e0c

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 410.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 18efeadc16bad71ee1ce8fe9c4822f541c559f616f44466e976fbace2f3b9c9e
MD5 b824b0f42006110839cdd0beb4d057ef
BLAKE2b-256 24b2bbd205924bdf4703143e603e3c8396ebe45bd843d18ea8c9229ac030b658

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 968.8 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 773dafa1e450dfe01355ec8e8279ff174e97023b148aaf119bb1d3863f7319fd
MD5 40ad2b079f018410f6e9c13d603c6699
BLAKE2b-256 7a162f240053b13d53430dcf8cace9bccea00f60b79fcaf9aacae96944e996bf

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 807.3 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c5b2edc8f57d26eb75c40c8280fee553f3a7af0b4195da72b4e5dac278d83279
MD5 086d7e04adade49cf103ee9f07bef158
BLAKE2b-256 dafc7e493028be7e6d9dd1395c4772fed58c36e3f1f5d612eeb863aebfe67d35

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 968.8 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 36065867ca684fb6ebbe71a989c5449e6cda6ea738ff586f7015b3fee06a4f6a
MD5 155e653ad36454a39c8edf5b12fde2fd
BLAKE2b-256 9a08028b6e4a9372b49e78c4e7c21b884b5accb54ee07cc107dab83a5165bb4b

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 807.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 6a83842b8f3d141aef5ae7ad9c6a9809df9391babe4407c458d83ff3ee323fbc
MD5 c10ecfa44be6bde58c6d96b2d2760bca
BLAKE2b-256 a02f338b2310e0e3987c60a247c13e94986e164d8659fe7cdd458457cbaada8f

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 447.2 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.6.8

File hashes

Hashes for PyKrige-1.5.0rc2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc31102b86c450d973cc35c60343d8a8b280867de3b30092f757a81b25212f22
MD5 e745940f4ad3a9a0537777642d83ee49
BLAKE2b-256 a9cc0f4d8f44e0ba8c8aad1bfad4fdee87d56c39b510a52f647c7742390b1baf

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 439.6 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 f33f2c6a02cc9fbdb7a4475c5983060b100eed21b01e627f659a052d91a9a433
MD5 1f79a821c89c9f2c7cefbdcd5cbc9998
BLAKE2b-256 c95982cb69573737d5b943770717e8800df44ba609c25d84fd25ed7f421963ea

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 409.3 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 61557fc4514859920fc1fc6f3f9207e4a5c800486896ff43c6a26a2318ee36b0
MD5 e8c2394ddbd82a5ffbd245aaa0753e62
BLAKE2b-256 cb9e022ea8ec8aa9ed1d4a77fcee2782ea66caa4dd3e5719868ced0f5aab4385

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 957.9 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 543ad32ebb88c22502069ca307e6a0b70777808aec37a32e5cb029006fdda1f0
MD5 8e04ff05a0a8e3ea1ffdd60c88c53661
BLAKE2b-256 dc55eb1ebe801ce25657ee401c4f68878a6208f3b52ba0b89eedc300f9e81d9a

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 798.5 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 88f63c6a214a32583ca4c6fcab1c88a70422bb8bfd28c07eb74fd482a195ef2a
MD5 6304686a3961cd1c333de633cfa8049c
BLAKE2b-256 5bcc1d4fdb6eb9b82417d9a9007df75e1ba234f235d138533184d2368298a71c

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 957.9 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 515fbe0490f9ab81f6fcaea8fbd6ae4b68762062ac0ff34afe3075f38b7c9547
MD5 ffad4504d9ecb7c4fa4173fe46d93b12
BLAKE2b-256 6b148cc3f37af43a58f63385ed06e6ba088a21f13aefd8865b4384680affddb5

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 798.5 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.0

File hashes

Hashes for PyKrige-1.5.0rc2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0f3a3635a24f5839668a9a5ba8503bd88fe3e4431b06994169ff821ca0c504f4
MD5 0f7df9b684af9b90d61d96e7955356ae
BLAKE2b-256 0dc3bbd720b679d76b34ed531c8f75cc97831b4aa5bb47a1c8282c6b145e6d6a

See more details on using hashes here.

File details

Details for the file PyKrige-1.5.0rc2-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: PyKrige-1.5.0rc2-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 443.0 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.5.4

File hashes

Hashes for PyKrige-1.5.0rc2-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eeba01e2c07f625f9f342bbc2f32dc40bedb98012c48913c76fc4bb111cae750
MD5 b18c11c93cf794e30c6afb2a424257b2
BLAKE2b-256 88073174c9e60e477781f08f27ff3341e2e6481aa4c6ddc10f7f7296492f2939

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page