Skip to main content

LBFGS and OWL-QN optimization algorithms

Project description

PyLBFGS

https://travis-ci.org/dedupeio/pylbfgs.svg?branch=master

This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).

This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.

Installing

Type:

pip install pylbfgs

Hacking

Type:

pip install "pip>=10"
pip install -r requirements.txt
pip install -e .

To run the test suite:

pytest tests

Authors

PyLBFGS was written by Lars Buitinck.

Alexis Mignon submitted a patch for error handling.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLBFGS-0.2.0.10.tar.gz (104.2 kB view details)

Uploaded Source

Built Distributions

PyLBFGS-0.2.0.10-cp36-cp36m-manylinux1_x86_64.whl (210.3 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.10-cp36-cp36m-manylinux1_i686.whl (190.5 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.10-cp36-cp36m-macosx_10_12_x86_64.whl (56.3 kB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

PyLBFGS-0.2.0.10-cp35-cp35m-manylinux1_x86_64.whl (202.6 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.10-cp35-cp35m-manylinux1_i686.whl (184.4 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.10-cp34-cp34m-win_amd64.whl (50.8 kB view details)

Uploaded CPython 3.4m Windows x86-64

PyLBFGS-0.2.0.10-cp34-cp34m-win32.whl (43.3 kB view details)

Uploaded CPython 3.4m Windows x86

PyLBFGS-0.2.0.10-cp34-cp34m-manylinux1_x86_64.whl (208.2 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.10-cp34-cp34m-manylinux1_i686.whl (187.5 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.10-cp27-cp27mu-manylinux1_x86_64.whl (186.4 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.10-cp27-cp27mu-manylinux1_i686.whl (167.6 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.10-cp27-cp27m-win_amd64.whl (51.6 kB view details)

Uploaded CPython 2.7m Windows x86-64

PyLBFGS-0.2.0.10-cp27-cp27m-win32.whl (42.6 kB view details)

Uploaded CPython 2.7m Windows x86

PyLBFGS-0.2.0.10-cp27-cp27m-manylinux1_x86_64.whl (186.4 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.10-cp27-cp27m-manylinux1_i686.whl (167.5 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.10-cp27-cp27m-macosx_10_12_x86_64.whl (56.8 kB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

File details

Details for the file PyLBFGS-0.2.0.10.tar.gz.

File metadata

  • Download URL: PyLBFGS-0.2.0.10.tar.gz
  • Upload date:
  • Size: 104.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyLBFGS-0.2.0.10.tar.gz
Algorithm Hash digest
SHA256 7578921014e3ffda78967d33d98cb1c284b73049707ca74cc6eb9ff5433ef6f4
MD5 a4b6484334f6850d5266b1fe711d4305
BLAKE2b-256 5c8c12507be9351e1ec0e64d416010fa2de55e635ddc942e258564f19be06f1a

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2595488f4aa536c59ea56b2b951ecdc87fa64c1519d01a4e4b8ba22c35c03067
MD5 6b7806783942b11aabcefb070961eadc
BLAKE2b-256 b5da0acb9a37a029a1800b65235a34d48cc58c7728bccddd80b524394d28423f

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7481480dcd5ae7a88e8500482f97dd7a4be3c3829280b5db2bbf5b15b3b4dfe2
MD5 a66577e0c4e9a9554e75cb9da3fcecdd
BLAKE2b-256 db9553a97e9b44e8f355cc16e17825d8ceb83f8886f054ab1fdba9cdbdf5125f

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 66a0f7359c6268d06b9143eceff304819677bc5fcd3c190bafd46766ee49679f
MD5 92f7e64a31a07a33faeb2ac2ba59cffd
BLAKE2b-256 5a3802dbe8fe1d4f2f8e822ed3ffaf30bd4967c4eb8c9bdcc37788607fbd28a5

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 588145d34b968843587568eac7b4c78001ae6bd984e60e47f9243b10536c4006
MD5 d7acb2cb5050e2484c35d29e07501342
BLAKE2b-256 57e695611fdc4596184f76ad57f23124cf937234668217d91631e0f01c2f38a5

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f632402ecc28faa179eac1e4c8bc2b812cf7003fd4f29f05e4d7cfb21c49def4
MD5 9011ad219f4d4e338664a50c09cce2e0
BLAKE2b-256 fedb359951b5275202b4ca872bb5a4eb5c0c62b2921029e36c79898285f812f7

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 750931df13a7336b34a5c2fed5098bd08584402f54e1b72028b6ba9083cb2860
MD5 0659bb50354741945976bf86430da4ee
BLAKE2b-256 6f5297762497bda4a7323bd41b0cba16fe98c837a5843a26ba937b24103d171e

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 8483bb1e13d5127067e1ee9419972f3842681b638e402f77a4fff35ad9e9edc6
MD5 51cc93b473df13264ff08e8d726f97dd
BLAKE2b-256 5bbbc3010cae09eb1095a79d118a1674cb759e5ff621dea4bcd210ed54cb39fb

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2d9b209f916ce417ed8418ee2ff2f465d246fb50177570ad4d706aeda9a0e86f
MD5 c8ef955bcd43039e0d181ac7d0d096b5
BLAKE2b-256 46849177260e213e426cbea9dafffa0acede95b737daea713f004064bf61fe22

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ed711e9860aae8232ddb9df365a3b565197ee368f66bcf5f1bc779cb8e7bc412
MD5 9dd5a8956f5aa4846a31a34ba6f9effc
BLAKE2b-256 8bf627869817baf4ae9e29045382daa648035315a5770e329f2a21d10f8c19ad

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 32ecb6731324da5e8ae57a976521a1d26c4008ab419a76499d933e580c9fbbf1
MD5 2667df95286cbd229d00d9fd6d1dbc6f
BLAKE2b-256 80dfdcc33e4769a6c9f4a344ec6b628ca07913d1121fc68471fc304dbb7828c9

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1a6f6f068c56ebd9137ee629bff5b5523c6fdb450642855414e61ddb9dad7db6
MD5 9b3cc62c6bbab113029f063ceff55e99
BLAKE2b-256 47ea6a5eb8d32ccefdb5bbe9622c10ae2a83b24b27f08823f6a5ff298fe4a73e

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 8f0b2bf6c7771db5737abf2a952e0fa02b02d4931888081d8ebaaf27e15f3c10
MD5 f4ea97ba3a5cf13c2650da5b0eb6345f
BLAKE2b-256 c97ebf80fb4614604d8b2f49eeed48dbee7e91d1889094a5f50f94a24c5f387e

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 e5df63ec8053d7bb08a554d7b497174a180757a9347b2033a4032303b5290684
MD5 7ddcdc5bf641d4db4725cb162a5364a4
BLAKE2b-256 2c7576cbb17991d0c6b5a2a3b33fb179c4d446879375174655cc7ecf881a3b87

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 60424efd848fba0b0ce3b65b2e317d9e296297c58897823d512b16c1e2969757
MD5 c9e9d677395390285b7d3c5d90d270dd
BLAKE2b-256 3ff3f941acc13ff4eff14d760d33c969f5aaf5f49bc9893aa03688361812be9d

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bb610369ed5d5eaace92c629cba4464cce03ad66b69655fca85a0ba74112e847
MD5 7b67149e14b6025557b06f2711ceb2b6
BLAKE2b-256 c3cada7c725fcf22b7f33bc64402352b59146c740771f34ddbfdb5f1182fddd3

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.10-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.10-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 361749e1b4df6e512d91bdb6940994a992952c3f45e2e2c264dffaaa453e8603
MD5 251e780c49fd40bbcc6763325cb647ef
BLAKE2b-256 717eacb395520d1338b06ffabe3ce91c10c1e99afb0d6369d9b49e0aabbfc9e7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page