Skip to main content

LBFGS and OWL-QN optimization algorithms

Project description

PyLBFGS

https://travis-ci.org/datamade/pylbfgs.svg?branch=master

This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).

This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.

Installing

Type:

pip install pylbfgs

Hacking

Type:

python setup.py build_ext -i

to build PyLBFGS in-place, i.e. without installing it.

To run the test suite, make sure you have Nose installed, and type:

nosetests tests/

Authors

PyLBFGS was written by Lars Buitinck.

Alexis Mignon submitted a patch for error handling.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLBFGS-0.2.0.2.tar.gz (79.4 kB view details)

Uploaded Source

Built Distributions

PyLBFGS-0.2.0.2-py2.7-linux-x86_64.egg (133.6 kB view details)

Uploaded Source

PyLBFGS-0.2.0.2-cp35-cp35m-macosx_10_9_x86_64.whl (41.6 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

PyLBFGS-0.2.0.2-cp34-cp34m-win32.whl (31.5 kB view details)

Uploaded CPython 3.4m Windows x86

PyLBFGS-0.2.0.2-cp27-cp27m-win_amd64.whl (36.9 kB view details)

Uploaded CPython 2.7m Windows x86-64

PyLBFGS-0.2.0.2-cp27-cp27m-win32.whl (30.8 kB view details)

Uploaded CPython 2.7m Windows x86

PyLBFGS-0.2.0.2-cp27-cp27m-macosx_10_9_x86_64.whl (41.5 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file PyLBFGS-0.2.0.2.tar.gz.

File metadata

  • Download URL: PyLBFGS-0.2.0.2.tar.gz
  • Upload date:
  • Size: 79.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyLBFGS-0.2.0.2.tar.gz
Algorithm Hash digest
SHA256 16ad402cea75c79ec549e6f031b5a4b7271e4d9c8939150121701ce510fd5294
MD5 1563eb049f942433cfc6d8eafd44ab77
BLAKE2b-256 4339d480689491eefd0b44d04197b91853e7fe7dd3e14622d40ae3578ab7d7da

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.2-py2.7-linux-x86_64.egg.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.2-py2.7-linux-x86_64.egg
Algorithm Hash digest
SHA256 44e46ab6bf1cd9de7613d38391be014b916077414e28e23556a1e4f83478dbdd
MD5 14240bb1dac83aaf334e477edfb83ade
BLAKE2b-256 0c6c1871950f0c05e358f9299bd7be5e778df04f075c3e724c298da7ea94d9fc

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.2-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.2-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ab45ca957eb5418eb843d4ca2bed1811eb7cc3b6911d3bc7923e4216075d7c25
MD5 459c6955e87b91ad25e7d64bc34e916a
BLAKE2b-256 a7e880b87c3fc35799285bdb04367ee9dd762ba9349d55f4cb8d9d7ca891c7c3

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.2-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.2-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 70471fac956eac0a41339bebf1a88ea918d2426c14cb28e587e86c791cb8b900
MD5 a0bdaf543198164fe1d80183d274ce8a
BLAKE2b-256 aac3035dc034b0219a2d73b855699de29a4f004c02e9c525ed267dd04c5b140c

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.2-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.2-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 d6abea568eebf563b5071e49477e695d9c6de003874ffbd775ff30b8f97bbb1f
MD5 2ee713fd42990dac40146e8df0efb8ef
BLAKE2b-256 164d8c95d3bf9638b77a87af1a8a26cc7e9650ad73733b8ce9e453d1a84c28bb

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.2-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.2-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 927a7f8f109bf48c25ed9fe723d632285ea0cdf1f49b619052502c614e354402
MD5 0fa390649e3f41d915b4aed26cb1acbe
BLAKE2b-256 603c28d8b9c5c2d92d75406e80a052876a46ba38be33ae3b623e855c83af9816

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.2-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.2-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 480b3c7e4fcf6b892c181b72ac0ff67c36c5eaa35051b7eb18f12bee68b2bab4
MD5 ee33f2f39c2ff513d7b4640482c8bd5f
BLAKE2b-256 aa24dd4022c71f728f4f2257de4329efe29bc3538e81e2395f3300396694f446

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page