Skip to main content

LBFGS and OWL-QN optimization algorithms

Project description

PyLBFGS

https://travis-ci.org/datamade/pylbfgs.svg?branch=master

This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).

This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.

Installing

Type:

pip install pylbfgs

Hacking

Type:

pip install -r requirements.txt
cython lbfgs/_lowlevel.pyx
python setup.py build_ext -i

to build PyLBFGS in-place, i.e. without installing it.

To run the test suite, make sure you have Nose installed, and type:

nosetests tests/

Authors

PyLBFGS was written by Lars Buitinck.

Alexis Mignon submitted a patch for error handling.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLBFGS-0.2.0.3.tar.gz (90.3 kB view details)

Uploaded Source

Built Distributions

PyLBFGS-0.2.0.3-py2.7-linux-x86_64.egg (138.8 kB view details)

Uploaded Source

PyLBFGS-0.2.0.3-cp36-cp36m-manylinux1_x86_64.whl (181.8 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.3-cp36-cp36m-manylinux1_i686.whl (158.2 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.3-cp36-cp36m-macosx_10_11_x86_64.whl (50.8 kB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

PyLBFGS-0.2.0.3-cp35-cp35m-manylinux1_x86_64.whl (175.0 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.3-cp35-cp35m-manylinux1_i686.whl (153.7 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.3-cp35-cp35m-macosx_10_9_x86_64.whl (41.6 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

PyLBFGS-0.2.0.3-cp34-cp34m-win_amd64.whl (36.7 kB view details)

Uploaded CPython 3.4m Windows x86-64

PyLBFGS-0.2.0.3-cp34-cp34m-win32.whl (31.5 kB view details)

Uploaded CPython 3.4m Windows x86

PyLBFGS-0.2.0.3-cp34-cp34m-manylinux1_x86_64.whl (164.9 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.3-cp34-cp34m-manylinux1_i686.whl (156.8 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.3-cp27-cp27mu-manylinux1_x86_64.whl (146.6 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.3-cp27-cp27mu-manylinux1_i686.whl (139.3 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.3-cp27-cp27m-win_amd64.whl (36.9 kB view details)

Uploaded CPython 2.7m Windows x86-64

PyLBFGS-0.2.0.3-cp27-cp27m-win32.whl (30.7 kB view details)

Uploaded CPython 2.7m Windows x86

PyLBFGS-0.2.0.3-cp27-cp27m-manylinux1_x86_64.whl (146.6 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.3-cp27-cp27m-manylinux1_i686.whl (139.3 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.3-cp27-cp27m-macosx_10_11_x86_64.whl (50.1 kB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

PyLBFGS-0.2.0.3-cp27-cp27m-macosx_10_9_x86_64.whl (41.5 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file PyLBFGS-0.2.0.3.tar.gz.

File metadata

  • Download URL: PyLBFGS-0.2.0.3.tar.gz
  • Upload date:
  • Size: 90.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyLBFGS-0.2.0.3.tar.gz
Algorithm Hash digest
SHA256 619c7091e1971f73795ccd2bc524eb3ba1a22165d883d68380685b0f185bd604
MD5 664b0fbbd23b6cc44936a81c15c85970
BLAKE2b-256 ff825bd1a652ee8d061593f07ba54eb62e72a6a04f60e9fc4273033f5a021d0c

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-py2.7-linux-x86_64.egg.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-py2.7-linux-x86_64.egg
Algorithm Hash digest
SHA256 64504344455d32a90757e0bff60a3d034fa2f472b3d8491614c43118323a3dec
MD5 ea8fc2f64592c47f75d1beb50f81b005
BLAKE2b-256 408aadea05a41e5c442a205947e3cd32cb5b9c71ed8b159d7c3c9fed68fa1f14

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2299c0769ffdb955249060a505975c8928b9d8204de65d9818dbf22367866bf0
MD5 98585d642c7caf0b51756357edb3ac1a
BLAKE2b-256 6c442106a9c694ba62f244ed30d71120af43336f46db39e95a1702d50afcfc2f

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2f7ec09edd29fbf819dcb43142af06bfe945bb22d761ccfefd55be5eb0af4089
MD5 f8c812112895afbc3f93ec4692a658af
BLAKE2b-256 f317bb8fa3bed0e562893150d2f3ca5e7bfede90b6f0751d22529948a637a29c

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 6e32c0da7817e4f30603bcb26e3aa5ad0bcc7a5223ee3ea399544c9890fe1400
MD5 78929aea0692a40f30704a38a771d702
BLAKE2b-256 359a1b0b4c441030baf6525ee461717cabd1e8b94e75100569f4b83c389407f5

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e501fdd3f594f10028fb64fc6b06c756967cc211b2c76ca9dfd7ecb7ea3b0167
MD5 eee72c8c37baef7df1a473e9a69e5141
BLAKE2b-256 f5ac5ec7a791331a6bbaccedbede3ce821d8f2a248b3858f1ceb603b3c76ddd0

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 91f3f0fa6994ffe674057d3899073518b69c5097dbc2110190b94afd01247fc9
MD5 af203cccf73061c750962ba3016da59b
BLAKE2b-256 4e4617f6aea7cfd6ffd9e2ee4ed80d51b45d46fc9647f12be954adc3fd7de82f

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c1c851ec8c10191928e071a5bcd4ed3e5b7e37dda405a294645ceb42ba856c7b
MD5 633f0a73e370be912617cc44e7f80273
BLAKE2b-256 fe6d4701027e1bc1a8d974628edd9ae943b9ef186f73a1e2080cb0a71a78a14b

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 f07256eb429a93868fc1b9f7e1974d133661ab9b09a8ee2379e7a46df97c7eac
MD5 e89948c759c079effee051854154d3d8
BLAKE2b-256 edd37781657b97ca9c0d9f24f5937cf69088bfba40938a6a2f095428f69b63c8

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 85f4004f54aab74fad1a0ad0114919e4b1c38ba4e08391dfc0d4ac76ead1b81c
MD5 88bfe18c19d48f30456fbf22444488cf
BLAKE2b-256 f991670aa98da57b7a00a863914b0dd9132288662961c32256ba2d5b58226cb9

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 57f3230b64aa6042b605d3b4077d22699c8e5541e8b5c30c4a78a751a3827273
MD5 2623d832512fe138499d8d502849096e
BLAKE2b-256 6dad97e78b1c1a8dc5d74b3e6ec06def4a4ea0ad1d8c8ec42735fc54585c486a

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 10980623cad00cbe6c9dbabb22f3867684a1fb8c11b64618bfd9d0afdb110b91
MD5 38ee677ca2017f9e21e9bf3bb4f0abe4
BLAKE2b-256 183804fca6557ecac21a235e971f41e7dbd851a650f275a1e4fb9b40899a5d55

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 33a7384a68667fd0b33563e539cc2b3385670fd0afc08a273ff79d848cb91c1b
MD5 4ebb7796fed768b514d0c79406de1bfe
BLAKE2b-256 823a1f6eacc68ad1125efbdcd5dca004cf6ef3bbd3cafc28bb98e2d6b68a2bb0

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 514e3cf6f90448a70555a1c4c2148b2eca084513a35de49356fe8463165937e4
MD5 0b131a889ee2fc5a450fcf306812590d
BLAKE2b-256 3f28ee312d5755b3847f9743bfcc51e9d2ed64130abc93a4023e8e16c49c09bc

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 b34ec2da81c056bc5027cd13692e95799105cc3b32d951989c3d36970dec0ea3
MD5 ccc346a7d8696685858b2d4264125ec5
BLAKE2b-256 6e474ad7692e7cac0ac8f3e16ce0c04fa208a1e6b477869ce1cd1222b2075f37

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 08207578f70af39e9aa00b744fd8aac62a2334a29e1e8c3f51a2072891b7509b
MD5 1ed89ca41d498835156dfce93f5171fd
BLAKE2b-256 ed3ce04d801b8bdd3b20b95aad0e34f5e2a8c87e334ac38920b7874aee145a0d

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a66fafba37fad1b91db651df48c0f146dc3489c5832cd69c81435c55c747a923
MD5 1deba1d2d9218e44dde5d26e8ac6ccf0
BLAKE2b-256 4ba25aab63975e0cf43e7541cfbc636abf6448965d07b3fc84d2391185da3629

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2189eab4ce7f83162b760ce847f84585482e4f907fbbec3a4ee18991caa17a23
MD5 cfb3c43be18acd99f0183bedc4168943
BLAKE2b-256 e9e0ea444918b65bb8a1d80e73add89c840e4f8e689dd6b5dd201fac4f819a94

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 bfff8a074f2fb511b5df13cbe480da5be0dc4d392d836a8d96dbde46e3e5ce16
MD5 6542704a358649a6ad9b1ff309c36063
BLAKE2b-256 8f0316d85a0401c513d67f3747973bb8179ac6f35a107f1f654d08ba3d5108ae

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.3-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.3-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 368a6a5dcb7a3d8ebf9616355d939327491f1bf01dcc2296046ee8b3534451b9
MD5 121a51b686eeb0b8a85c2b25139b375f
BLAKE2b-256 d4c837eed77a4e12b3cf94174c1e40a376934d8b5366d0cc442f0b59dbcc9e78

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page