Skip to main content

LBFGS and OWL-QN optimization algorithms

Project description

PyLBFGS

https://travis-ci.org/datamade/pylbfgs.svg?branch=master

This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).

This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.

Installing

Type:

pip install pylbfgs

Hacking

Type:

pip install -r requirements.txt
cython lbfgs/_lowlevel.pyx
python setup.py build_ext -i

to build PyLBFGS in-place, i.e. without installing it.

To run the test suite, make sure you have pytest installed, and type:

pytest tests

Authors

PyLBFGS was written by Lars Buitinck.

Alexis Mignon submitted a patch for error handling.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLBFGS-0.2.0.4.tar.gz (86.5 kB view details)

Uploaded Source

Built Distributions

PyLBFGS-0.2.0.4-cp36-cp36m-manylinux1_x86_64.whl (181.9 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.4-cp36-cp36m-manylinux1_i686.whl (158.2 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.4-cp36-cp36m-macosx_10_11_x86_64.whl (50.9 kB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

PyLBFGS-0.2.0.4-cp35-cp35m-manylinux1_x86_64.whl (175.0 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.4-cp35-cp35m-manylinux1_i686.whl (153.7 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.4-cp34-cp34m-manylinux1_x86_64.whl (179.1 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.4-cp34-cp34m-manylinux1_i686.whl (156.8 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.4-cp27-cp27mu-manylinux1_x86_64.whl (159.4 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.4-cp27-cp27mu-manylinux1_i686.whl (139.3 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.4-cp27-cp27m-manylinux1_x86_64.whl (159.4 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.4-cp27-cp27m-manylinux1_i686.whl (139.3 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.4-cp27-cp27m-macosx_10_11_x86_64.whl (50.2 kB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

File details

Details for the file PyLBFGS-0.2.0.4.tar.gz.

File metadata

  • Download URL: PyLBFGS-0.2.0.4.tar.gz
  • Upload date:
  • Size: 86.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyLBFGS-0.2.0.4.tar.gz
Algorithm Hash digest
SHA256 5353a0056979b3bae46eb957eb2da185eab089e05442b15ffe6554a0e19fcc6c
MD5 57d7400245764504c2ec707eb01e767c
BLAKE2b-256 9a74afad4ca51577da0d49e89e1ecc96f671bae7b2fca5479c65cbc762b4a24a

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ba465d29ebf35eb2f4c33bd03b5768ec7723de59b2d22377f2d52f8630ff3c40
MD5 15a5480c4bdf4af6e22504d290d6d861
BLAKE2b-256 e39f76d78ab7c119d7ae0fa3d4a56eb62d31271f4897a4d88eb5c68e5fb6342d

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 228095eb2172b77b265df2aaddd18215fcaaf61075552c22e311b74d567365cd
MD5 a4e235d2b6e38f581471ab36f845b605
BLAKE2b-256 ed009e7e64d90fbaaf3ab216ab2db282dc8f960afdb2c12c2a2303288448da79

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 7f857a51f5c32799c34ad85c308ab537babc83dc2f23df5134d829e8c2ef69c3
MD5 cb52d5a52423581ab709916323bfa8c0
BLAKE2b-256 a9a1e74bea712810cbca4754121f93cf0f9fa8e6f1d4f64e1f60070ff6a78e1b

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f3979e41969c67206a5488bed14d763c5cd952892cc5743d8fe32bb71abda3d8
MD5 36ccdfe8a26da6a96cf5b40fb0594ca1
BLAKE2b-256 c3fdc27d3f5284f0b3c447951dc6e724551ba20c58f89a2e40c39bb170c7a69e

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a52b816f4fec9fd7e46b135933214d67e91218fa2da85961a33d32350d74be0e
MD5 5569fc426eb5d5bd46dd9646870b25a1
BLAKE2b-256 020537d413dbb147cbfc5117666c807240458249a837e5d64824114a202b0704

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7f0afcbec223925956cd0e6fddbe095da72afa1d99f3dc58f2d95f82a1624280
MD5 eeb0ce0ca9ff539f2393d7dca0ce905d
BLAKE2b-256 f757937022bc07f16762942cb9f369479ab7e49c1af7e4f2327c52c4937e2e41

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8ed2e32ba38ac4418023235ef847bdb59f33a1e5f9bc084063aa0e5b799f2574
MD5 fe0708f658d4eb01a6cc023cbd167094
BLAKE2b-256 a385d81d39e67be4806fdf895b278c22cf85417315989a29fa6776762498fb15

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 57ca52b537f5a48a8933ee4ec5706ef091388fd35864b181492986e9740fac1b
MD5 fe12e10b9a3a76945b2211fe8a606747
BLAKE2b-256 71a131eaa06eb45abbe8caffab8de9cd79419556a833ccafdc821e619a9fc647

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1a225dff5a653570c95dfc469f1eef5370b238b6c15528654267a789a0b45463
MD5 e96b23e08468f71fdfb500652a6c0c5a
BLAKE2b-256 949079c911778ca5a3991a28326bffd7ecbed4dd713d62f9e1d83c8569d15d8d

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 25efa871bdf9f5edf2d07c35fe8c7a28e707907cb860eb042dcf431d6078d18c
MD5 5605c87ad4b7e97dae020836ade63b7b
BLAKE2b-256 2cccf8a946c33705b05a4285aead81eb0c8f7a47634a05a9a1c6eae504c8c75b

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f4fdf196959d382d238c3900cf17b280d531408fc241f06e61bf12192942ffae
MD5 f279b01607e312c2987c25f5da31beec
BLAKE2b-256 f536453dfff0e6f711cd2e42194c7082e30df218129aad07ed4f606f8d0f9de7

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.4-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.4-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 3cc68cdf60853794588d2f478282b0eae64b632c9860864bba284efdc9def703
MD5 88521aaa30ca0a8bd7502e2c74022064
BLAKE2b-256 ef6a0934911438cde04ac51f771a10e9681d6654f635e4c1d698aa668d4c6dee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page