Skip to main content

LBFGS and OWL-QN optimization algorithms

Project description

PyLBFGS

https://travis-ci.org/datamade/pylbfgs.svg?branch=master

This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).

This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.

Installing

Type:

pip install pylbfgs

Hacking

Type:

pip install -r requirements.txt
cython lbfgs/_lowlevel.pyx
python setup.py build_ext -i

to build PyLBFGS in-place, i.e. without installing it.

To run the test suite, make sure you have pytest installed, and type:

pytest tests

Authors

PyLBFGS was written by Lars Buitinck.

Alexis Mignon submitted a patch for error handling.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLBFGS-0.2.0.5.tar.gz (86.5 kB view details)

Uploaded Source

Built Distributions

PyLBFGS-0.2.0.5-cp36-cp36m-manylinux1_x86_64.whl (181.9 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.5-cp36-cp36m-manylinux1_i686.whl (158.2 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.5-cp36-cp36m-macosx_10_11_x86_64.whl (50.9 kB view details)

Uploaded CPython 3.6m macOS 10.11+ x86-64

PyLBFGS-0.2.0.5-cp35-cp35m-manylinux1_x86_64.whl (175.0 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.5-cp35-cp35m-manylinux1_i686.whl (153.7 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.5-cp34-cp34m-win_amd64.whl (41.5 kB view details)

Uploaded CPython 3.4m Windows x86-64

PyLBFGS-0.2.0.5-cp34-cp34m-win32.whl (35.3 kB view details)

Uploaded CPython 3.4m Windows x86

PyLBFGS-0.2.0.5-cp34-cp34m-manylinux1_x86_64.whl (179.1 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.5-cp34-cp34m-manylinux1_i686.whl (156.8 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.5-cp27-cp27mu-manylinux1_x86_64.whl (159.4 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.5-cp27-cp27mu-manylinux1_i686.whl (139.4 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.5-cp27-cp27m-win_amd64.whl (42.6 kB view details)

Uploaded CPython 2.7m Windows x86-64

PyLBFGS-0.2.0.5-cp27-cp27m-win32.whl (34.6 kB view details)

Uploaded CPython 2.7m Windows x86

PyLBFGS-0.2.0.5-cp27-cp27m-manylinux1_x86_64.whl (159.4 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.5-cp27-cp27m-manylinux1_i686.whl (139.3 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.5-cp27-cp27m-macosx_10_11_x86_64.whl (50.2 kB view details)

Uploaded CPython 2.7m macOS 10.11+ x86-64

File details

Details for the file PyLBFGS-0.2.0.5.tar.gz.

File metadata

  • Download URL: PyLBFGS-0.2.0.5.tar.gz
  • Upload date:
  • Size: 86.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyLBFGS-0.2.0.5.tar.gz
Algorithm Hash digest
SHA256 2df73ac735ca6af8549abf224de40f611e2b5d6a64657e2f619fdcd9ae4351dd
MD5 99ed8b7097c9581ee542aa06f6d5c301
BLAKE2b-256 91e1d13124ef411931a6855d4007e0e7c486805ec21659dfbbd0f53ec1c982db

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0d75c6b7c30bfe7799d13c523baea86c0ee7b6c08e3f8f6d6297a8c5ee767931
MD5 a48c82476c4f585f961190a58f57b686
BLAKE2b-256 c25f0cae146d1777a5bc382e842d895222d9c9502b876c1ec7c98ece90393e01

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 f94876fbdfe28f77f440b7d25884de6da8df054b129af2356eaddf478dba34d7
MD5 76ac4c97979a66326c0c932bc2f1c07e
BLAKE2b-256 84907cef6d2d319df9f2a7694ffd74817e79d86eccab903a90897c8d28b1f012

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp36-cp36m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp36-cp36m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 2292cfdaa2603cf64cfe5cfc21b90378072a1833eba9a75aacca375c99d4619f
MD5 02fd2bd2e4b58df8b218f4c3071960aa
BLAKE2b-256 522aece0417b9381527a09a0723e6177852e0daff916fcbf2ff4e406ed620920

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 92b3bfe1991c5741263f2b933ed1fa2cbea01031c098a2c74d9199c65c3de9ef
MD5 2f974efc2d4d5d0a215369a66c14f74e
BLAKE2b-256 541be8ec3ed4251b757e27b1083b6631fcef3945c5ab3501ed45d878d11d12d1

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2a166ac9b68c65c2039fa6388f2bc9d52f2a723751ea3c79464cc6d0ee9a0076
MD5 fe6647e2ef0ea5091100a6cfa82a2e97
BLAKE2b-256 6ba9ea6a8dde8b835a5d70d09aec19a1101caf04bc01936c698bfea9e4a461ba

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp34-cp34m-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp34-cp34m-win_amd64.whl
Algorithm Hash digest
SHA256 c8eca24a4220961b9e1cc9064a7a9bc1518b59bc1d285476e67bd113a52a89db
MD5 912fe144434d98eddfe62777d8158ec2
BLAKE2b-256 76367076e417a5515c730e8a939de5e50219aa1edf3a14bcccc93eec5c1e0aea

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp34-cp34m-win32.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp34-cp34m-win32.whl
Algorithm Hash digest
SHA256 d710718d0ad1e210d1affd79e88162ec81858fa1517addea982bd3ce44c64be9
MD5 7fe334b88a28b4d710d57543b531b412
BLAKE2b-256 e638d7ca15b984cb10464ad2aefd3b8b64877d825045dfc6ab9265808eb21059

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 831733998f3d58ff9ebc574b094f48e7fe7cc8ab3c3f5034b7032c577591b944
MD5 2e95c9b5f1014018f458bdd5dbf45bc3
BLAKE2b-256 a1f4f4697c8c2ef1883e0f2e4e528af744196b2b061b85bab39d61c848fbcef9

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a741fe3aa2f5aa37d438f2031325960f14234a9cc2f8314ff3a17a6110f044da
MD5 2f3fb7c57a59979fefc912f75f68584c
BLAKE2b-256 535f993ee1d33070cfb70fa9c19ccfdd0a8a466ab07b24497d96c88f9663d855

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9210d2d36c49f49da6eabf4bec5d6871cbb2b6ffe6bfcdf871405c83ae945430
MD5 18f31354bcdb8d27e6daaee67605ccc0
BLAKE2b-256 c0e582a91e22940c0b9803db8230d4f3025dd026678b985dbe417fca2d2811f8

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 26a2136a173d21914240778eed551ad19e68415cb83caf9a90f55e833b2e96ab
MD5 a5977dad9952562667bc4ac21544fbc7
BLAKE2b-256 f2886f3e3a4b292808b7cbf30146f47ef19a14d76f2bf92b4f34922d96d43d2f

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp27-cp27m-win_amd64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 27354d4e4e195511cd96805773b248b37477618c6f40db7a4b3a1173d354c147
MD5 7b4489439a274b0c2bac075515aa0def
BLAKE2b-256 ea211f7faeac5d3e2fecb7f61136535e128cb0cc734208429316b8544ad9a75a

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp27-cp27m-win32.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 1ccc0a25ceb85d1cbe805f99cb643bba0a5c8044f2d1ca55c2f66923c6416836
MD5 96ab722f552bc47d93947047e06bf457
BLAKE2b-256 83256c2b19295e5db4710a4deb864ee5580deb85b98f2e39325db83153bd5051

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4d4c8ff2d9769d30f3a6ab38b3c81dbe5a30ec469810437cad57bb904a93df1c
MD5 d2c7a3a838205f12773ff91a5a818b1e
BLAKE2b-256 0674797c33f7e14d25cadc9897179a2660e80ebfa8a171d9a15a9f3e263ab7d7

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 39ce2cf439eed129cf7e22921270ab636772dce2301105ad4f8e7a201c9427f0
MD5 4f1b7245fda896a00dc9c74b02bd76af
BLAKE2b-256 f6ba496b11be3c4946d47a804ed64cb7d28da8978183a78f3a4c2ebf703a4346

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.5-cp27-cp27m-macosx_10_11_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.5-cp27-cp27m-macosx_10_11_x86_64.whl
Algorithm Hash digest
SHA256 9bdad724f88827e6e531466544801b9912c0d33468c80ce79ed4ec63ee829ef0
MD5 f0eeec42f74925c71546b028289b79f1
BLAKE2b-256 2d2eec85346f1375b1a6bdbd7cca03fc61305a79062ce7d9187e80b89d549678

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page