Skip to main content

LBFGS and OWL-QN optimization algorithms

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLBFGS-0.2.0.6.tar.gz (100.1 kB view details)

Uploaded Source

Built Distributions

PyLBFGS-0.2.0.6-cp36-cp36m-manylinux1_x86_64.whl (209.8 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.6-cp36-cp36m-manylinux1_i686.whl (189.9 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.6-cp36-cp36m-macosx_10_12_x86_64.whl (55.8 kB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

PyLBFGS-0.2.0.6-cp35-cp35m-manylinux1_x86_64.whl (202.0 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.6-cp35-cp35m-manylinux1_i686.whl (183.9 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.6-cp34-cp34m-manylinux1_x86_64.whl (207.7 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.6-cp34-cp34m-manylinux1_i686.whl (187.0 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.6-cp27-cp27mu-manylinux1_x86_64.whl (185.9 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.6-cp27-cp27mu-manylinux1_i686.whl (167.1 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.6-cp27-cp27m-manylinux1_x86_64.whl (185.9 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.6-cp27-cp27m-manylinux1_i686.whl (167.0 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.6-cp27-cp27m-macosx_10_12_x86_64.whl (56.3 kB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

File details

Details for the file PyLBFGS-0.2.0.6.tar.gz.

File metadata

  • Download URL: PyLBFGS-0.2.0.6.tar.gz
  • Upload date:
  • Size: 100.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyLBFGS-0.2.0.6.tar.gz
Algorithm Hash digest
SHA256 85b05ba07ae389e531cb3c3e8eef2db27a89c0443afa49071f850ec7eb1c5528
MD5 efe5ad606b733721ee00ab32d2d44d7d
BLAKE2b-256 c15de7717ed2dc4d4fdaa0e448add514994186540fb20ae0bb628a87e68f90d1

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6e29f49250d3ed5e80de360f813724895dd712e25ede6900b520b2fbd2f704ef
MD5 30c0e37013ef209dcfe63dce9b2d8e75
BLAKE2b-256 942f1cb218dc536540495bebc65b60a208e5a3c59c3ba47876f972bb48225875

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4d394946f037c217395a8a17914e4020319a4e721e59c4454cb2d67bbbdf6bca
MD5 97959151f8f50c4088837caacf9794ea
BLAKE2b-256 586b5cc0597909c77d355b3307f23c4704baa97d929ecb553893034a91ccb247

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2273ffae09aba50cc077be4da76af2a66b017a634214278b5fe121e520223f5f
MD5 04c5dbb3aa78eb3395a610c801ec0ab6
BLAKE2b-256 75503a55da09f29af206c6b06443f537d5da3b28dad3a5c956d83edd4401b738

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f892a0da4e633e22ec2789fd9518dbc0373e870f3839f41e5dc31e38f2a6d7a0
MD5 8c98a8a380e2738ef6edb4970a71f360
BLAKE2b-256 6cd7edc08bb9fd23e3121a4fdf807a68d7b8e5ac7dd6ab5e493b171538169948

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 17b86bbc6670e4eb16d7c5444def1c71208be6f086dd4d56787ca1e9bcfef8b7
MD5 736542abb44dbb804d658ea8ef469a10
BLAKE2b-256 3605db5be32da6ae2ba562dae45e86e81a9b32bf5c780a495f6740f1c999bc16

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9235926263c2e85c818ea92cf547d6433af921fe7b64d87f78b5f0a352743ee8
MD5 f5dac552b591063f5703202f02e2601e
BLAKE2b-256 a4161fb07ebe2f468a5bec8a24283cf6f50598326e9537567f00c27570959675

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e17345cdab2ecbc69e8c7f13a5da8e4e0298b56e2cdbfcf4bb0f6a757dad1057
MD5 8543a9137521a8064358f79272357e42
BLAKE2b-256 b94593a7949062f0ff04564a37824522066177dbf099dd1753e7527e636c84b0

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4debf3d94b967697f3ddb462f6729656d719d4b26f7df9c98c1d2b424f2a8ef4
MD5 bb5028bc527b3a5c57506c5fb8282270
BLAKE2b-256 674e26fa5629d7681e2d935a3d8f33ceba4721bd6c95757a963c7212eb117005

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1254c541ddb7a5dda75ff5273c90ee6cdb7fee3f9bcb2cd58c0239180a3b2521
MD5 4d9db5a5ad095ea8aaf0f5d41568f948
BLAKE2b-256 271b82a6e70c68aacafe2a44787d71b30c15383d9442f96496cc40d6186fa2a8

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 41b70a089cbf22c699598bd492ee26ee4415ac36b20c6c7ee8eeddfc0ac696b3
MD5 0646b8d442e9d28d12c7343daf1d1a76
BLAKE2b-256 ae1e29557f54a7fb89e55e730723e37d56e48323d0ed675afba9b789563ed0b0

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3f1ccdc5ac12d62dceda5d371787778b4c32b19e9457c864313df72973fa2540
MD5 20611e1b4f9ea912508b56389e016454
BLAKE2b-256 21c78a0beb956fb1bc30b98e09b5589f2c6e1ff87edb1d501f2402a9067b6f79

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.6-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.6-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 37191a191009b12c2c4c590f5067aac23f5a6623a2c18309249b61b18e3d93cf
MD5 e674d546751d9d95d61f0e9f80c87869
BLAKE2b-256 5b1a2fb4ee50a205508d082bdb28cadc02d8930dd002d52b044a7b07e0717135

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page