Skip to main content

LBFGS and OWL-QN optimization algorithms

Project description

PyLBFGS

https://travis-ci.org/dedupeio/pylbfgs.svg?branch=master

This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).

This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.

Installing

Type:

pip install pylbfgs

Hacking

Type:

pip install "pip>=10"
pip install -r requirements.txt
pip install -e .

To run the test suite:

pytest tests

Authors

PyLBFGS was written by Lars Buitinck.

Alexis Mignon submitted a patch for error handling.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLBFGS-0.2.0.8.tar.gz (101.1 kB view details)

Uploaded Source

Built Distributions

PyLBFGS-0.2.0.8-cp36-cp36m-manylinux1_x86_64.whl (210.3 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.8-cp36-cp36m-manylinux1_i686.whl (190.5 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.8-cp36-cp36m-macosx_10_12_x86_64.whl (56.3 kB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

PyLBFGS-0.2.0.8-cp35-cp35m-manylinux1_x86_64.whl (202.6 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.8-cp35-cp35m-manylinux1_i686.whl (184.4 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.8-cp34-cp34m-manylinux1_x86_64.whl (208.2 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.8-cp34-cp34m-manylinux1_i686.whl (187.5 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.8-cp27-cp27mu-manylinux1_x86_64.whl (186.4 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.8-cp27-cp27mu-manylinux1_i686.whl (167.6 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.8-cp27-cp27m-manylinux1_x86_64.whl (186.4 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.8-cp27-cp27m-manylinux1_i686.whl (167.5 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.8-cp27-cp27m-macosx_10_12_x86_64.whl (56.8 kB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

File details

Details for the file PyLBFGS-0.2.0.8.tar.gz.

File metadata

  • Download URL: PyLBFGS-0.2.0.8.tar.gz
  • Upload date:
  • Size: 101.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyLBFGS-0.2.0.8.tar.gz
Algorithm Hash digest
SHA256 0e7309713f87c50e17458efa30d6c9b79fa807196c2f3be211df32e0992beb35
MD5 dc82368428fed461355da34a5b5eae67
BLAKE2b-256 7874ce4d54554be08f7aa361becd54c04c188a716f2535385f262b05fd12a204

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 58b0f270dfb6bf79c14bbe428251bb9af9d1a5269ddb03ad8bb984f6d289d7ac
MD5 e0c14553cbd7ad4d25465ba9b68adfad
BLAKE2b-256 bd090dfb3b97aaf964897664ca18f7644ffaf62da6fca27e401424b9e03ff097

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8b80c489b4629b6fae50e7815cb3befc4ed3761eb616e2c47e3f7a9d248025b0
MD5 266ec9b71bd5a938352376ff711e75a4
BLAKE2b-256 34ac05eeaaca5fed16fb766168f18416a1440d3add48d9ba6fc7341dede7f77b

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 cd4778e1b8590c0216d8f04d2a70e0530d264b296c8df60a31648844203aa1a3
MD5 0c31fdca5fc2805424ca0830b573d3eb
BLAKE2b-256 957c9378cf14177f4a8f727808af4face1b1406c4b68d9a78328829b368751a4

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 69667f315497b1897048b0a66886b52433674e00c27bb961e787ea827addc4fc
MD5 bd4dffa6dde7d3c8803bb3268bb5fe20
BLAKE2b-256 3149b5e92bde79e9199b62d09f2f8cf77e73d29c26ec386431cd5b6cb998ab7a

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 16441704a1348f6b2a7e66040fb47b0990e772ef29fde5145468120e0fcd8a19
MD5 6a88388c6882cb5ac2eefb6f267b0933
BLAKE2b-256 8989c523665c2313fd278499ec599f1537e68b3b342f813705cbb677e0d33367

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cf55706fd388eb725bd54d5f85063a1a329c18d20d5d93b208d4f033f82740aa
MD5 d5f1cba4f41c7440fa6dfbb25f00de2a
BLAKE2b-256 3bd469a60e2e9cc31fa4770628232bba90d325101c7ec31f1b4076e10edaf9a7

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a3cec8193c643daf9952aa1cdf0f56b9fe323bba2650eea4d479f3ac8eeaa2c3
MD5 589b65de3f1a57065a1b3c83bd3597b4
BLAKE2b-256 2e02ffa556fb3db482b729b6594f2d6f3d9fa10dcd2b215762d8fe25497a4aba

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 85cbd5b3eb813f76f9936e7c24bcff8cf98e29621a324d88c859609655a94ddc
MD5 a6a13e64e07ce39dfd53ac21c6acfc4f
BLAKE2b-256 9257844e164c6f1cb855972d77f4251841652a4b3da366e4a514073f4f4c3d3c

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9e8fde98239332959adfb4dfeb07a689325375ca211ad4845883f4a5ba78fb85
MD5 42223c634735be131efa4ec794e28802
BLAKE2b-256 3372ed854554011fc5bfddf3796bde73c0b2489e5366919771310ff9f52b9f27

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d73645cb197eb89e8b1e474c5faeb3073e2d3e8bbfce55a5ff5e74088693107a
MD5 d25a0e13aeae8285c82ce83fd4bcdd48
BLAKE2b-256 2e2b68551db31be406543a04c80b4d47e545bf2b67be2a4c9bce01036647b44f

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ecaf16229de06c224648b27d1fcc0ad67266156c653bb885962a7726f0b1f4ff
MD5 550d83dfbc4002f5cee8fd23c39802de
BLAKE2b-256 d57933c9c4330e7b2b59077eae39fb36ba8c2c2f603c73ba669568b7bef8bdc7

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.8-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.8-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 16d60e8844fb567987af48ee342c548846a2260b938fcfee5d8826c57ac60c81
MD5 b9d182b377b2ed366a4ab558388c2901
BLAKE2b-256 f062fc798243baef96c82e733e1241bf19fdf6625c76a5238cf62983431565f9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page