Skip to main content

LBFGS and OWL-QN optimization algorithms

Project description

PyLBFGS

https://travis-ci.org/dedupeio/pylbfgs.svg?branch=master

This is a Python wrapper around Naoaki Okazaki (chokkan)’s liblbfgs library of quasi-Newton optimization routines (limited memory BFGS and OWL-QN).

This package aims to provide a cleaner interface to the LBFGS algorithm than is currently available in SciPy, and to provide the OWL-QN algorithm to Python users.

Installing

Type:

pip install pylbfgs

Hacking

Type:

pip install "pip>=10"
pip install -r requirements.txt
pip install -e .

To run the test suite:

pytest tests

Authors

PyLBFGS was written by Lars Buitinck.

Alexis Mignon submitted a patch for error handling.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyLBFGS-0.2.0.9.tar.gz (101.2 kB view details)

Uploaded Source

Built Distributions

PyLBFGS-0.2.0.9-cp36-cp36m-manylinux1_x86_64.whl (210.3 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.9-cp36-cp36m-manylinux1_i686.whl (190.5 kB view details)

Uploaded CPython 3.6m

PyLBFGS-0.2.0.9-cp36-cp36m-macosx_10_12_x86_64.whl (56.3 kB view details)

Uploaded CPython 3.6m macOS 10.12+ x86-64

PyLBFGS-0.2.0.9-cp35-cp35m-manylinux1_x86_64.whl (202.6 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.9-cp35-cp35m-manylinux1_i686.whl (184.4 kB view details)

Uploaded CPython 3.5m

PyLBFGS-0.2.0.9-cp34-cp34m-manylinux1_x86_64.whl (208.2 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.9-cp34-cp34m-manylinux1_i686.whl (187.5 kB view details)

Uploaded CPython 3.4m

PyLBFGS-0.2.0.9-cp27-cp27mu-manylinux1_x86_64.whl (186.4 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.9-cp27-cp27mu-manylinux1_i686.whl (167.6 kB view details)

Uploaded CPython 2.7mu

PyLBFGS-0.2.0.9-cp27-cp27m-manylinux1_x86_64.whl (186.4 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.9-cp27-cp27m-manylinux1_i686.whl (167.5 kB view details)

Uploaded CPython 2.7m

PyLBFGS-0.2.0.9-cp27-cp27m-macosx_10_12_x86_64.whl (56.8 kB view details)

Uploaded CPython 2.7m macOS 10.12+ x86-64

File details

Details for the file PyLBFGS-0.2.0.9.tar.gz.

File metadata

  • Download URL: PyLBFGS-0.2.0.9.tar.gz
  • Upload date:
  • Size: 101.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyLBFGS-0.2.0.9.tar.gz
Algorithm Hash digest
SHA256 fe18eb8acc623e6eeebd77f176366975a06b0dff645dcebe1fa294631959c68a
MD5 23df5e8653fc086adfa46cecc69bdcfa
BLAKE2b-256 4f0f5ae3a47f08664ad42e77fa715f9f1e2cc44f8c17baaa7565cc55adf0d2b9

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d1206f1c9ce74bbb6d526f3d4839f6377e85686010736e58dff9fc6d43058cee
MD5 954b04013a1cc799fd8993a0d2523d85
BLAKE2b-256 56c4ef3f4fd368751830162173a052369799776803567a9db334e95b3ec6d2cd

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp36-cp36m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 99f09dfc34c02e59263f0ef0f310848967a891b2b95fa715555671120ae9148a
MD5 81aabb6ec8d718de4e15f84d06a6cb4d
BLAKE2b-256 2cd1746f73ee53710736c3bbbfe0c984597a67982aa2511077c44e20acaa7150

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp36-cp36m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp36-cp36m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 580a0bad32929aef8246a038e1100ee24d4537a73893ae3faa470b39b7724239
MD5 d76578916ac29421aa7c51ebbbbe8c72
BLAKE2b-256 fff4d0e9d313275f494b730a16a48d9616fb251c06ff44ab360561c6694de695

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 af8a32cbac782ec9eb11ca636328a3d661b7f59da66b9d6577f66b88ae8d4ec0
MD5 ff147449b59470fe5e94d237f82cf43b
BLAKE2b-256 1c959b1bab2d6eef001dc828395a20dde12bfa26945960e10d9c89c3c8107a82

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp35-cp35m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 420b504cf812b641bcdfcde2d8256adf93948342e96f37cb3221e8f2dc757873
MD5 4966f1a224b071e877a1fee0a1de86c5
BLAKE2b-256 db851140f725c18c8561b491d30535d1a4e20210d51f19b5b73dfa6ec11e8206

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp34-cp34m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp34-cp34m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 402fefed3b8d051bdc719758e38d3632145e75b8ae0e20f787d805a78667d1b3
MD5 c901fd7f0a4f7cb0a3b2093ed968d00f
BLAKE2b-256 17286ae207640296057507c51aa363ed7fee8e5d838b89d00c2ab4178d6e5835

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp34-cp34m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp34-cp34m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 edc229e8db2f52ceaf5ab994365b40180e7e295d747d5d26f024548af6923096
MD5 bcbf4526ee52b49eb5249c31d88b800f
BLAKE2b-256 cdb78eb12d8d4f8dc7f08f2ad9bb3b2f7e5b855a309ca2e4f58a8fc4642b7ac2

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 420583d44cbd8f2b0295033c7b628b299e706e549687a8a0b0435ea78c1d2c75
MD5 dd5e15ec5336ef22c6a1abfac89b11ca
BLAKE2b-256 d8d6715b3d0ddefad7684379e86caa08549357d99cbb57fcae5d3d7ce784ff03

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp27-cp27mu-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 a584b99b0cf6b1275b774629f85833040c6db1e0ebde0ec7be46e7e00d67d9ef
MD5 5d0a5a1a7f885f788d50526b7ceab23c
BLAKE2b-256 f093f0f8d6d843bf78ae2f930c26a54214fa574b9c15dc10c32954d8f38f1ac5

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1408e067cd88c8575a3d816d7aada81da4ece62607dbbba308fc3fa4b93dd35f
MD5 a57199710c46e1e3e7a1024acaad5ebb
BLAKE2b-256 08d791a2aff893d91c7186271d627b06671fd734fef4bab24aa7a46f1603a3dc

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp27-cp27m-manylinux1_i686.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0d609e0a2f42868b0204fa8b48cca6cae40f78089a33f3d6150b8af607c5541a
MD5 7a7c67462e1064875c35e512487d8f21
BLAKE2b-256 2bd05794d36ef83bb97908665a3f537db2aedda7e6a7963b4b6a51986afe2003

See more details on using hashes here.

File details

Details for the file PyLBFGS-0.2.0.9-cp27-cp27m-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for PyLBFGS-0.2.0.9-cp27-cp27m-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7a63641f338e5ed6275ca6f94ae7199cdf72c81d519c5aa8b523eb144f4877ab
MD5 a586d5b1bc7ced7570fec22f33d77667
BLAKE2b-256 fd44b1d895585ec32fae143d341d6a5442f2b07a32d89d1406e9abbab5b6ddc4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page