Python bindings for MUMPS, a parallel sparse direct solver
Project description
Requirements
Getting Started
Install using python setup.py install or run from the local checkout.
Examples
Centralized input & output. The sparse matrix and right hand side are input only on the rank 0 process. The system is solved using all available processes and the result is available on the rank 0 process.
from mumps import DMumpsContext ctx = DMumpsContext() if ctx.myid == 0: ctx.set_centralized_sparse(A) x = b.copy() ctx.set_rhs(x) # Modified in place ctx.run(job=6) # Analysis + Factorization + Solve ctx.destroy() # Cleanup
Re-use symbolic or numeric factorizations.
from mumps import DMumpsContext ctx = DMumpsContext() if ctx.myid == 0: ctx.set_centralized_assembled_rows_cols(A.row+1, A.col+1) # 1-based ctx.run(job=1) # Analysis if ctx.myid == 0: ctx.set_centralized_assembled_values(A.data) ctx.run(job=2) # Factorization if ctx.myid == 0: x = b1.copy() ctx.set_rhs(x) ctx.run(job=3) # Solve # Reuse factorizations by running `job=3` with new right hand sides # or analyses by supplying new values and running `job=2` to repeat # the factorization process.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
PyMUMPS-0.1.tar.gz
(97.0 kB
view details)
File details
Details for the file PyMUMPS-0.1.tar.gz
.
File metadata
- Download URL: PyMUMPS-0.1.tar.gz
- Upload date:
- Size: 97.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2022b4863a29e9dc0e49ab751404f36a8b6d3b53a060dcd1ae093ed51ed3ada |
|
MD5 | f64dd26c6fd37af15809a3faef9479ba |
|
BLAKE2b-256 | ac27773ea19219ed0fff64db06f415e6606414b09493f1525c5a73941d0517dd |