Skip to main content

Python bindings for MUMPS, a parallel sparse direct solver

Project description

PyMUMPS: A parallel sparse direct solver

Requirements

Getting Started

Install using python setup.py install or run from the local checkout.

Examples

Centralized input & output. The sparse matrix and right hand side are input only on the rank 0 process. The system is solved using all available processes and the result is available on the rank 0 process.

from mumps import DMumpsContext
ctx = DMumpsContext()
if ctx.myid == 0:
    ctx.set_centralized_sparse(A)
    x = b.copy()
    ctx.set_rhs(x) # Modified in place
ctx.run(job=6) # Analysis + Factorization + Solve
ctx.destroy() # Cleanup

Re-use symbolic or numeric factorizations.

from mumps import DMumpsContext
ctx = DMumpsContext()
if ctx.myid == 0:
    ctx.set_centralized_assembled_rows_cols(A.row+1, A.col+1) # 1-based
ctx.run(job=1) # Analysis

if ctx.myid == 0:
    ctx.set_centralized_assembled_values(A.data)
ctx.run(job=2) # Factorization

if ctx.myid == 0:
    x = b1.copy()
    ctx.set_rhs(x)
ctx.run(job=3) # Solve

# Reuse factorizations by running `job=3` with new right hand sides
# or analyses by supplying new values and running `job=2` to repeat
# the factorization process.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMUMPS-0.3.2.tar.gz (7.9 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page