Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMca5-5.7.3.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.7.3-cp311-cp311-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyMca5-5.7.3-cp310-cp310-win_amd64.whl (9.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyMca5-5.7.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

PyMca5-5.7.3-cp310-cp310-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.7.3-cp39-cp39-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyMca5-5.7.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

PyMca5-5.7.3-cp38-cp38-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyMca5-5.7.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

PyMca5-5.7.3-cp37-cp37m-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyMca5-5.7.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

PyMca5-5.7.3-cp36-cp36m-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.6m Windows x86-64

File details

Details for the file PyMca5-5.7.3.tar.gz.

File metadata

  • Download URL: PyMca5-5.7.3.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0b4

File hashes

Hashes for PyMca5-5.7.3.tar.gz
Algorithm Hash digest
SHA256 d38f0dac858dd4cfb5a2f6f5402e5fd798c56ef8ae8e7580dda435048575349d
MD5 104e4bcbef4a02caf9c84fec20a74fe9
BLAKE2b-256 c5dfbe61186355aa5669849ffc50d476ed70f380dafcd250ff5edc27af76df47

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0b4

File hashes

Hashes for PyMca5-5.7.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c66ad053109e2792816e2895c799395e513bdc48c12c01320c40e7fc247c0a9f
MD5 77932a8188926b2c1e3b5a5c5779b0a0
BLAKE2b-256 38bd9ed596853575c51ebc6f15f61359ff29b6362d2db312542472913cfe4c06

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0b4

File hashes

Hashes for PyMca5-5.7.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 584b645eb1e0d4469aff9442925399dd64d6f500685b0b9173c054b8c83a9f82
MD5 d66d744251eb9457243ab11f66d1f003
BLAKE2b-256 9e20cab21ecd63bb8caaf32614cd0c83fc02c2120b727d7c68c63f60303cfb6c

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d38f99bf185776328d7eccc492cef156e1965c84f355053179ff6c7a8cf8168d
MD5 e77b12febe84feffd83a5689fc5c04ae
BLAKE2b-256 83614960113fd31cb59d763be612ae8be73a3dcb79f037e01ed6d362a8b6be95

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a285ad7bd6d911098f4ed171218a0c815711a1a7f6a004957abe7c2154f1c891
MD5 41d8931a7d0e8b7ebd5d6b0d4d6bd763
BLAKE2b-256 61c65de4893b25a8f9b3c11071b569d413a92592047d92bc737d12e589467444

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0b4

File hashes

Hashes for PyMca5-5.7.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 52d15b0dcfa50ac2d7854278c31b6f541b9c1b37339a2c17c71e7fda8672f0f9
MD5 d0a4d226449ab407d0185bec96fe42e6
BLAKE2b-256 07afe853fe7de1873233ac79265ce2378ff6614f5258d2e64e9655bbd6ec17ec

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e125401008c34d98af9254983cc622968c34c85c8e8488f91089218e695a24ea
MD5 d9feb1a17a948d3bb457a489f1b7c09c
BLAKE2b-256 8539703f803d65b4e047e642ad24a12d7d4209ed90175ec3571797b7f0202a6e

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0b4

File hashes

Hashes for PyMca5-5.7.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 22b2c7a9884d005f75b48ffd258d6cc89fd71df7311a3f9d6097c1ba7bdd219e
MD5 bd8aa63b18c001c73d76114eb50e9211
BLAKE2b-256 7c80ccbd8e6265c001a229c242d1ecd39fd97720d9a289f7a12092ba30f8b43f

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 57a2aeb4faae4fa9e560a2edd3cd544c5e669409f650e2bf16f9c2cba9874aaa
MD5 57aa6ed10563cd938f09bd1377356fbd
BLAKE2b-256 58bc53fe6c75e43b12b33eaee9036146ce5c71d1c69ed866be73cfcb7d8635b7

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0b4

File hashes

Hashes for PyMca5-5.7.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 3036c06f29174f7ab38bb1c618856af2a56e995534201d1cee1e368bf2372346
MD5 889de07825573f27a8ea2314aa1c2f26
BLAKE2b-256 95abf5637f9363af8f2ee559740e193aacace06650c3738583d04d9321fa4573

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.7.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 aa9581317f243e71850e879381784f85d0f7e43c7aefc653c6b16884f13b30e0
MD5 caeeb05863fc34d984ae1b8b923f6681
BLAKE2b-256 45e4e095b1d39cf18632c747994e0e17ae63584e76f58f3e0f0b373743adb3a2

See more details on using hashes here.

File details

Details for the file PyMca5-5.7.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.7.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.0b4

File hashes

Hashes for PyMca5-5.7.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4d883a74142448dc4629f89b531b0cf9a0822b08051e3613ebc9f55617754d99
MD5 fa047c82e6df290b205f4291cb9098f9
BLAKE2b-256 586fbb0c9ffc06d574290648809a157a765dd3a4bbef2831bb5856ca1fb20e82

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page