Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMca5-5.8.2.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.8.2-cp311-cp311-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyMca5-5.8.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.2-cp311-cp311-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.8.2-cp310-cp310-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyMca5-5.8.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.2-cp310-cp310-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.8.2-cp39-cp39-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyMca5-5.8.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.2-cp39-cp39-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyMca5-5.8.2-cp39-cp39-macosx_10_9_universal2.whl (10.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.8.2-cp38-cp38-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyMca5-5.8.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.2-cp38-cp38-macosx_11_0_universal2.whl (10.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

PyMca5-5.8.2-cp38-cp38-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyMca5-5.8.2-cp37-cp37m-win_amd64.whl (9.5 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyMca5-5.8.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

PyMca5-5.8.2-cp37-cp37m-macosx_10_9_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file PyMca5-5.8.2.tar.gz.

File metadata

  • Download URL: PyMca5-5.8.2.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for PyMca5-5.8.2.tar.gz
Algorithm Hash digest
SHA256 28938237c864fdde5fdd981dd276dc1c11022968f42dfdfd26f8c81e0a936b35
MD5 7203c6f96a66ef01926daef6f1af7cbb
BLAKE2b-256 8d5af949d6d3018d87c143eea7f062b5335afc5c78e178a597a869b3c7711b23

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for PyMca5-5.8.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3a5859a7afc87b95b323ce842176f61bd15d919e9e65a2e94367ec5cd14bf3ec
MD5 040bf5697a4bb7cfa1b89f72120f0683
BLAKE2b-256 1608ace96b1f01fcc9cec91b2d6b763685abcb899736a3f4e40f0a0456919351

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e3416c1b018b2f052bd015aae2a8dda591c29376b6e32c62bd3b75ab86413819
MD5 7e60ae1d2b14eba6ba28a6cab41f6148
BLAKE2b-256 3d033f9315f0ce02c96031096a6d81a09e808928e4dab39d29dd27313e5d0950

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f08632d4a942102bec15ec2d9b60be6928c4af80a267326c2362e69f80bcc72b
MD5 9d46c67fef18105b8419668b2354a66d
BLAKE2b-256 7a4148bd5063bf4a9d00dd6dabe8344cd7cb4df44af100cb4d54c7b87b6edaae

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for PyMca5-5.8.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5b7e873b67fd26ab997f4d7e3350456a8a4176250a75871f7f55b6cab1007b8a
MD5 efbab60b74c4b9fb7472939b272c8d57
BLAKE2b-256 e1014b1bc977b9efead4dfd79317298ce7082bf0c9870927a012266d79d77737

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8f0a8c16f80da72259e3d24c25cb5cb137c0e6cc2804769127a795499816fee5
MD5 9d9bc62fa219e9283ec3c07cadd27f50
BLAKE2b-256 63948afff1a67686d5ca1830f55f56516ae697098bc6b5ac1b177db5b43be4fa

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2fc5a4c568027c727a34edecb04725e89df3604b07010b78f3c9dfedada3c529
MD5 0710c167601415c97c6d1acadba126d2
BLAKE2b-256 1d807117c2ce662d5c4b6ff077884449adeedcd1ac83b823ddcf1411cc52b759

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for PyMca5-5.8.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6843d2ede692a50f792a842031c148fa8577883190bc04e798001e3798d6ae25
MD5 411905660b25c43dedbb7d11a5e70c60
BLAKE2b-256 1b0d1eeb2fcb5c8a998b7b4d275f385de9e09a76be70c335a921baa1e42f4db2

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7976faed187f476522de86f935cf49ae036e0f1511e4f4c4760be981472bc021
MD5 5eb1e315a0abc57d863c92c2667b3ca7
BLAKE2b-256 b798efc65b17d5698a2fa530be0fc671d7697e0410eb352b5a9a88a204d6dfd5

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2600997d252e1e5aa4e24b9cf59fe16bcf15a90b7115dc78e2e99ea43387ddba
MD5 17150a6b52e63b017b0f888881bc232c
BLAKE2b-256 f3daf2935b38d24bdc6ceb118a212345388575d582b8e154b522b4074a7fc9ac

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 05f267c040a2cc2b778c132caa50d759a12e6f7437ded41a5b9f3d4fa990f3b9
MD5 48cb07fadd17cd4efa54642dabf6219a
BLAKE2b-256 4384a3df964cb84638abda2223a7244912fb5b74f18a8a62b1a7bdb3d3259d86

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for PyMca5-5.8.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 36c07babe822a56ac2901aa9cc42533953faee745ca4b52589a9622121f19ff7
MD5 39a3a9fc5dd3d27c1f341388a0900998
BLAKE2b-256 c23c8268642bb7662a32808bc13bcc40906841ecdff835804ada8d0e90e0db95

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c1897244258bc59025b099a1446980509d265d1aa19b2658e47e2fbed08225e8
MD5 6371b5afd3d13feb7314eb3d459ed716
BLAKE2b-256 ff76e81c8fb38b2e659cf260742e2f7e76e24c562f62513fbcd45094e3c79fb0

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 dfc5d1bb946f1caff2c35545c3659413423b7983a009e8518e1c520c5464acea
MD5 1fd7c99220af84c68c3fbbf06df0c92f
BLAKE2b-256 9861e29766daff00bb2d90934d35bd529d729056190be25b0c788e6c602c21f4

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 879f3de83b1a7d69b32c1540845d1d7291ff78808c79b0c2668aaa08a9c9685d
MD5 6ae14c5774ab5aac01a79e003c43dffd
BLAKE2b-256 eed771c6ee8535d628c9f1a344c8b751a8819b0b61b8bd1960334e0034824b2c

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.8.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for PyMca5-5.8.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 b0214fef590bd4b691965e690eb94584a580a699711cd74186902bba378d730e
MD5 90d584276571c2111e4a0f2e0ddb72ff
BLAKE2b-256 98b46fa95b7b95c3daad7ca6813aa5a9668138d96217cec795ad3170ec21be7c

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 be5185ac5176eaa7cefda35c4826b6dabf09fb4870669b06bd02e8028da1dea4
MD5 25e09c3c2265a3a8dbf7aeb1f3ed1196
BLAKE2b-256 4b6f967c4ee9938aad511bd89c192322fe7661840df1918d28e8a85d0fbe887b

See more details on using hashes here.

File details

Details for the file PyMca5-5.8.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.8.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a8e1459cc3519cb7d8f3b784ab05c1af0297af045c192a58542007a63eb937b1
MD5 aad337f49a9c2b2a6035d6ae029a088f
BLAKE2b-256 49de93ef2084e131e682d73f9231d89165768d126b69b83dfb214637d33d89b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page