Skip to main content

Mapping and X-Ray Fluorescence Analysis

Project description

Stand-alone application and Python tools for interactive and/or batch processing analysis of X-Ray Fluorescence Spectra. Graphical user interface (GUI) and batch processing capabilities provided

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMca5-5.9.1.tar.gz (15.9 MB view details)

Uploaded Source

Built Distributions

PyMca5-5.9.1-cp311-cp311-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

PyMca5-5.9.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.1-cp311-cp311-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.1-cp310-cp310-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

PyMca5-5.9.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.1-cp310-cp310-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.1-cp39-cp39-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

PyMca5-5.9.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.1-cp39-cp39-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

PyMca5-5.9.1-cp39-cp39-macosx_10_9_universal2.whl (10.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

PyMca5-5.9.1-cp38-cp38-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

PyMca5-5.9.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.1-cp38-cp38-macosx_11_0_universal2.whl (10.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

PyMca5-5.9.1-cp38-cp38-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

PyMca5-5.9.1-cp37-cp37m-win_amd64.whl (9.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

PyMca5-5.9.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (11.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

PyMca5-5.9.1-cp37-cp37m-macosx_10_9_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file PyMca5-5.9.1.tar.gz.

File metadata

  • Download URL: PyMca5-5.9.1.tar.gz
  • Upload date:
  • Size: 15.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.1.tar.gz
Algorithm Hash digest
SHA256 a9c926ea8b7a7f8839cd48ee2ce70a62f556ac3b0d67b7601be3a5c2dbd099ab
MD5 2cd772473acc1cfb16cac960e199eaa3
BLAKE2b-256 eae5bb345dbb031f4a744b1a7c470eb2f2a3bd648c3e237d6da6bba0855f6514

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 094be20f951327d62aecc8d33ac94ebd8f14056e279969dd74f977ff468c26bd
MD5 981b54db7923a93742491728c7399fe7
BLAKE2b-256 297856d2b6e59120e3512fb45fe5e321d4bfdd73361b7d9409ae3c8067eb0614

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 88dd0f316cb2b056d2205646d9f880e1989aa9ce75c7dbe0cf88f2340cb3cb36
MD5 92ee3a29c961e315ec684688d77881f7
BLAKE2b-256 ca3cc992d8d1444109496a7c8f3041d5e842fa082aa6512dcef3be420d2827aa

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 16c7ddd64bbadb8d2571c0c313c4cc8d399fdffdd521bf13a4c79df33f885425
MD5 57db176d946108689e4575359de00113
BLAKE2b-256 1f5ddf8aacab4b10927e4a896eea2dd0a558a01612784057b702b6066fba5347

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e4e29c741a1c3a86d4750b9674fa3dcedae03566f7995dcef537deca931c1400
MD5 793c3e43d9f9f53a7ae86af249457c1f
BLAKE2b-256 668a5eb7f83495727b36e96be5c60039c1567db8ea0847344b7bf50baf037a67

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 d866adc7b742903e7f183dad99f39397d785f743c0ac77c96775fd16b2e8957f
MD5 4983d3bea42b49d5282103834e085a03
BLAKE2b-256 1f7cd9e977eb04197e01a56175bed2d40585e5ec3828e35f9f1b756ea8a7692a

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f60010968efa0a23963a628a869fbddab696a22685b63b76194f9000f91c65d8
MD5 fe12fe64748685dd10ffa8d4ef63d210
BLAKE2b-256 5814badd1bdb1f98f7fa944fbbe8fdec0f70f99061f76c1f4d5d2a53f59e8e99

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0b92ac99e8b6f50b2c74281d7d89db54df73ffe063d1ad1d645fb35f0e9c1e7a
MD5 71d58d1c86b5fd2531b7f13f47452c82
BLAKE2b-256 61aa5d73c5fd90933ac546b81bae89b14717a2b1466f2bee46ec5d5ad9ca1711

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 434c72b2d4b931db884d24154ec05ac0dfae6915d8f329a89435dfb60b1268d3
MD5 e6cb33554d8b0743f7f5f0abd04b98ed
BLAKE2b-256 ad4dfc7eaae3a9a49755bd148b5b1e29abf1f68c86357e7ace3eaa47ed072049

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 415aead960ef02557250cef4809f98ff7effb627557a13991040a19d262df4ec
MD5 4731433d800e54411cc53d1ea0241a70
BLAKE2b-256 0f7af07e99703cc741dbfd31d769ec5aae860b4558ca1f2dfdfecf9254158bfd

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f8b78f2edf3f03bee423f536cf8301c3c44ad2ae107ef8fdaabdfa986c266277
MD5 ca2372770a60301822897da83c16265a
BLAKE2b-256 49fcfb2df97e16837fc0854767f15b9b6880e9a59803304fdae96f3c8e92f5e1

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 000e8ed3cab4773e3f93e5c8ebf0caab99e3f3cf6eaaf26a762d8d7a2da29243
MD5 1a91979d623faba909ca096c477bd069
BLAKE2b-256 b75711ed38098fbac96d34a84bf69d0ddec49670466e10bb17d86bbb916887d2

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0df7c5dc4dbadfb16e83c30c32ee8d7a09d54064049516afff37439765c088ac
MD5 d0ac82133a1b965dcb9457eda3565b7f
BLAKE2b-256 a7717c6e8e9c27eb01ea3a494dd55b1de857cff2e1f6986e4ef88468480621ae

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 1d3d1dde289fb0741051df556f74a533f164d939712997bb1f428947220342bf
MD5 07db7a77719037cc5048a1af19ca9896
BLAKE2b-256 e3e1defd0117496bee10f6ea19eea26cf0c2e089b4935d935e2196d638ae01cd

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5ded51103b79de9c4a99910e76962d4dfb1f9b8f021e061a52ae8736e51531bf
MD5 8a528a18035f250bfb6830677ac4bbae
BLAKE2b-256 85762b1a482f0c2b244d06ca144349452e6154c6b545ebc99106672371262f40

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: PyMca5-5.9.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 9.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.10

File hashes

Hashes for PyMca5-5.9.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 868be7ec8c96423c82892a8fde4facdca241cc644750c0dea94d47fe1082116e
MD5 c61376362ac6c886d7e2eea3f39e892c
BLAKE2b-256 3b9fb42fb070338dd9ffa78308533deaeaa5889dd61da3d8a2b3b3fd807e7d10

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2d23a6393c193b2b1888e52eef8eb57275fc73e7dfe921d0f6ee82f72e326dc0
MD5 6686272d7a1eb6dae7ba261f20a311f5
BLAKE2b-256 b50491f0b0fb6a550452532168f56b3768748d56fb94700bf6c99bf0bc7adbc8

See more details on using hashes here.

File details

Details for the file PyMca5-5.9.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for PyMca5-5.9.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e93a8824f51cb1f7d567605273f91067c9ab0d02864617ec8fea3ffa7eca32f
MD5 05f9a084a0f33400832340de10868a3e
BLAKE2b-256 d88b5eda3f69f2606ad1b4b8b3070d55e51ce7bf6924e86bb7a7eab128812b5d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page