A Python wrapper around the NLPIR/ICTCLAS Chinese segmentation software.
Project description
PyNLPIR is a Python wrapper around the NLPIR/ICTCLAS Chinese segmentation software.
Easily segment text using NLPIR, one of the most widely-regarded Chinese text analyzers:
import pynlpir
pynlpir.open()
s = '欢迎科研人员、技术工程师、企事业单位与个人参与NLPIR平台的建设工作。'
pynlpir.segment(s)
[('欢迎', 'verb'), ('科研', 'noun'), ('人员', 'noun'), ('、', 'punctuation mark'), ('技术', 'noun'), ('工程师', 'noun'), ('、', 'punctuation mark'), ('企事业', 'noun'), ('单位', 'noun'), ('与', 'conjunction'), ('个人', 'noun'), ('参与', 'verb'), ('NLPIR', 'noun'), ('平台', 'noun'), ('的', 'particle'), ('建设', 'verb'), ('工作', 'verb'), ('。', 'punctuation mark')]
Features
Helper functions for common use cases
English/Chinese part of speech mapping
Support for UTF-8, GBK, and BIG5 encoded strings (and unicode of course!)
Access to NLPIR’s C functions via ctypes
No third-party dependencies (PyNLPIR includes a copy of NLPIR)
Runs on Python 2.7 and 3
Install
NLPIR supports Windows and GNU/Linux. PyNLPIR will install, but not run, on other platforms (e.g. OS X).
Just use pip:
$ pip install pynlpir
That’s it! Everything is shipped with PyNLPIR – there are no external dependencies.
Documentation
PyNLPIR has documentation. It features an installation guide, tutorial, and API reference.
Support
If you encounter a bug, have a feature request, or need help using PyNLPIR, then use PyNLPIR’s GitHub Issues page to get in touch.
License
PyNLPIR is released under the OSI-approved MIT License. See the file LICENSE.txt for more information. This license doesn’t apply to the included copies of NLPIR’s data directory and shared libraries.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file PyNLPIR-0.1.1.tar.gz
.
File metadata
- Download URL: PyNLPIR-0.1.1.tar.gz
- Upload date:
- Size: 12.5 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9c9c8cb47dafc43c98cbf4ea1d42e73e180b4dd7586725fa9389c1bfe49a85e6 |
|
MD5 | 167950a13867c19a68fb6c6071c87499 |
|
BLAKE2b-256 | 5c4a37fb64eef5ade7865270cfe5bbcc1586ba94790ea6244d3c70cfb443ffac |