A python library for loading static configuration
Project description
A python library for loading and validating configuration. PyStaticConfiguration has the following design goals:
separate configuration loading from configuration reading
provide configuration validation
support loading configuration from multiple heterogeneous sources
support transparent configuration reloading
allow for easy extension of validators and loaders
Build Status
Install
PyStaticConfiguration is available on pypi: https://pypi-hypernode.com/pypi/PyStaticConfiguration
The source is hosted on github: https://github.com/dnephin/PyStaticConfiguration
$ pip install PyStaticConfiguration
Also see the release notes.
Documentation
Overview
PyStaticConfiguration is divided into two operations Loading configuration files and Reading configuration values. See Advanced usage and Extending staticconf for more details.
Loading configuration files
PyStaticConfiguration supports loading config values from many file formats and python structures. See the full list of loaders. When the configuration is loaded, it is put into a ConfigNamespace object.
Multiple loaders can be used to override values from previous loaders.
import staticconf
# Start by loading some values from a defaults file
staticconf.YamlConfiguration('defaults.yaml')
# Override with some user specified options
staticconf.YamlConfiguration('user.yaml', optional=True)
# Further override with some command line options
staticconf.ListConfiguration(opts.config_values)
For configuration reloading see Reloading configuration
Reading configuration values
PyStaticConfiguration supports three methods for retrieving your configuration values. All of them have a similar set of methods which use validators to ensure you’re getting the type you expect. When a value is missing they will raise staticconf.errors.ConfigurationError unless a default was given. raises staticconf.errors.ValidationError if the value in the config fails to validate.
See the full list of validators. Methods are named using the validator name. For example the methods for getting a date would be:
staticconf.read_date()
schema.date()
staticconf.get_date()
Simple readers
The most direct method for reading config values is through the readers interface. These readers will return the value from the configuration namespace after passing them through a validator.
import staticconf
# read an int
max_cycles = staticconf.read_int('max_cycles')
start_id = staticconf.read_int('poller.init.start_id', default=0)
# start_date will be a datetime.date
start_date = staticconf.read_date('start_date')
# matcher will be a regex object
matcher = staticconf.read_regex('matcher_pattern')
If you’ve loaded your config into a namespace (using the namespace kwarg), you’ll need to make sure you’re reading your values from that namespace. This is done through a NamespaceReaders object, or using the namespace kwarg on the reader function.
import staticconf
# From a namespace, using kwarg
max_cycles = staticconf.read_int('max_cycles', namespace='iteration')
# Using a namespace reader
config = staticconf.NamespaceReaders('iteration')
max_cycles = config.read_int('max_cycles')
ratio = config.read_float('ratio')
Readers accept the following kwargs:
- config_key
string configuration key
- default
if no default is given, the key must be present in the configuration. Raises ConfigurationError on missing key.
- namespace
get the value from this namespace instead of DEFAULT.
Schemas
Configuration schemas can be created to group configuration values for classes together. Configuration schemas are created using the staticconf.schema module. These schemas can be instantiated at import time, and values can be retrieved from them by accessing the attributes of the schema object.
from staticconf import schema
class SomethingUsefulSchema(schema.Schema):
# namespace is optional, and will default to DEFAULT
namespace = 'useful_namespace'
# This path is prepended to each attribute, so the below schema will
# expect values at useful.max_value, useful.ratio, etc
config_path = 'useful'
max_value = schema.int(default=100)
ratio = schema.float()
msg = schema.any(config_key='msg_string', default="Welcome")
config = SomethingUsefulSchema()
print config.msg
Schema accessors accept the following kwargs:
- config_key
string configuration key
- default
if no default is given, the key must be present in the configuration. Raises ConfigurationError on missing key.
- help
a help string describing the purpose of the config value. See staticconf.view_help().
Proxy getters
The getters interface follows the same naming convention, but returns a ValueProxy instead of the raw value. This has a few advantages over the readers interface
these calls can be made at import time, so all expected configuration values are known when the configuration is read.
when a config is reloaded the proxies will refer to the new value
Note: ValueProxy objects do not work with c-modules. If you’re passing a value into a c-module, make sure to pass in proxy.value which is the underlying raw value.
import staticconf
# Returns a ValueProxy which can be used just like an int
max_cycles = staticconf.get_int('max_cycles')
print "Half of max_cycles", max_cycles / 2
# Using a NamespaceGetters object to retrieve from a namespace
config = staticconf.NamespaceGetters('special')
ratio = config.get_float('ratio')
Getters accept the following kwargs:
- config_key
string configuration key
- default
if no default is given, the key must be present in the configuration. Raises ConfigurationError on missing key.
- help
a help string describing the purpose of the config value. See staticconf.view_help().
- namespace
get the value from this namespace instead of DEFAULT.
Advanced usage
Reloading configuration
The ConfigurationWatcher and ReloadCallbackChain objects are provided as part of the staticconf.config module to reload configurations.
ConfigurationWatcher.reload_if_changed() will check if the file has been modified since the last reload, and reload the configuration when it has.
ReloadCallbackChain is provided to add post-reload callbacks. For most cases you should be able to create a custom validator to build types from your configuration data. If that is not possible, this class can be used to call arbitrary methods after the config is reloaded.
import staticconf
from staticconf import config
def build_configuration(filename, namespace):
config_loader = partial(staticconf.YamlConfiguration,
filename, namespace=namespace)
reloader = config.ReloadCallbackChain(namespace)
return config.ConfigurationWatcher(
config_loader, filename, min_interval=2, reloader=reloader)
config_watcher = build_configuration('config.yaml', 'my_namespace')
# Load the initial configuration
config_watcher.config_loader()
# Do some work
for item in work:
config_watcher.reload_if_changed()
...
ConfigFacade
A ConfigFacade wraps up the ConfigurationWatcher and ReloadCallbackChain in a nicer interface for the most common case.
import staticconf
watcher = staticconf.ConfigFacade.load(
'config.yaml', # Filename or list of filenames to watch
'my_namespace',
staticconf.YamlConfiguration, # Callable which takes the filename
min_interval=3 # Wait at least 3 seconds before checking modified time
)
watcher.add_callback('identifier', do_this_after_reload)
watcher.reload_if_changed()
Extending staticconf
Building configuration loaders
staticconf.loader.build_loader can be used to create new configuration loaders. It takes a single argument which is a function. The function can accept any arguments, but must return a dictionary of configuration values.
from staticconf import loader
def load_from_db(table_name, conn):
"""Load configuration from a database table."""
....
return dict((row.field, row.value) for row in cursor.fetchall())
DBConfiguration = loader.build_loader(load_from_db)
# Now lets use it
DBConfiguration('config_table', conn, namespace='special')
Building custom getters or readers
Both staticconf.getters and staticconf.readers provide a similar mechanism for creating a function to retrieve values from the configuration from a validation function. A validation function should handle all exceptions and raise a ValidationError if there is a problem. It should return the constructed value.
First create a validation function
def validate_currency(value):
try:
# Assume a tuple or a list
name, decimal_points = value
return Currency(name, decimal_points)
except Exception, e:
raise ValidationErrror(...)
Example of a getter
from staticconf import getters
# A getter without a default namespace
get_currency = getters.build_getter(validate_currency)
# A getter with a default namespace
get_currency = getters.build_getter(validate_currency, getter_namespace='special')
# Use the getter like any other staticconf getter
usd = get_currency('currencies.usd', namespace='money_stuff')
Example of a reader
from staticconf import readers
read_currency = readers.build_reader(validate_currency)
Building custom schema types
Building custom types for a schema is the same idea. Using the validate_currency() example from above:
from staticconf import schema
currency = schema.build_value_type(validate_currency)
class PaymentSchema(object):
error_msg = schema.string()
usd = currency()
cdn = currency()
# And use it
config = PaymentSchema()
print config.usd
Reading dicts
By default PyStaticConfiguration flattens all the values it receives from the loaders. There are two ways to get dicts from a loader.
Disable Flatten
You can call loaders with the kwargs flatten=False.
Example:
YamlConfiguration(filename, flatten=False)
The disadvantage with this approach is that the entire config file will preserve its nested structure, so you lose out of the ability to easily merge and override configuration files.
Custom Reader
The second option is to represent a dict structures using lists of values (either a list of pairs or a list of dicts). This list can then be converted into a dict mapping using a custom getter/reader.
Below are some examples on how this is done. The readers interface is used as an example, but the same can be done for the getters and schema interface by replacing readers.build_reader() with getters.build_getter() and schema.build_value_type().
Create a reader which translates a list of dicts into a mapping
from staticconf import validation, readers
def build_map_from_key_value(item):
return item['key'], item['value']
read_mapping = readers.build_reader(
validation.build_map_type_validator(build_map_from_key_value))
my_mapping = read_mapping('config_key_of_a_list_of_dicts')
Create a reader which translates a list of pairs into a mapping
from staticconf import validation, readers
read_mapping = readers.build_reader(
validation.build_map_type_validator(tuple))
my_mapping = read_mapping('config_key_of_a_list_of_pairs')
Create a reader from translates a list of complex dicts into a mapping
from staticconf import validation, readers
def build_map_from_dicts(item):
return item.pop('name'), item
read_mapping = readers.build_reader(
validation.build_map_type_validator(build_map_from_dicts))
my_mapping = read_mapping('config_key_of_a_list_of_dicts')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file PyStaticConfiguration-0.7.1.tar.gz
.
File metadata
- Download URL: PyStaticConfiguration-0.7.1.tar.gz
- Upload date:
- Size: 15.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 72ead9544c73413d6e45d13a4d98894bebb59992bc77cc123ab1295d94201737 |
|
MD5 | 6e50e1f89e04d287c1288f35bfbbb31f |
|
BLAKE2b-256 | 2bb9affe12afd30042b48dd879a3f7c54a2c942f22efcae6eb5931b1a426aa30 |