Skip to main content

Flat-file datastore for timeseries data

Project description

PyStore - Datastore for timeseries data

Python version Travis-CI build status PyPi version PyPi status Star this repo Follow me on twitter

PyStore is a simple (yet powerful) datastore for timeseries data. It’s built on top of Pandas, Numpy, Dask, and Parquet (via Fastparquet), to provide an easy to use datastore for Python developers that can easily query millions of rows per second per client.

PyStore is hugely inspired by Man AHL’s Arctic. I highly reommend you check it out.

Quickstart

Install PyStore

Install using pip:

$ pip install PyStore

Or upgrade using:

$ pip install PyStore --upgrade --no-cache-dir

Using PyStore

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import pystore
import quandl

# Connect to local datastore
store = pystore.Store('mydatastore')
# default path is `~/.pystore`, otherwise:
# store = pystore.Store('mydatastore', path='/usr/share/pystore')

# List existing collections
store.list_collections()

# Create a collection
store.create_collection('NASDAQ')

# Access the collection
collection = store.collection('NASDAQ')

# List items in collection
collection.list_items()

# Load some data from Quandl
aapl = quandl.get("WIKI/AAPL", authtoken="your token here")

# Store the first 100 rows of the data in the collection under "AAPL"
collection.write('AAPL', aapl[:100], metadata={'source': 'Quandl'})

# Reading the item's data
item = collection.item('AAPL')
data = item.data  # <-- Dask dataframe (see dask.pydata.org)
metadata = item.metadata
df = item.to_pandas()

# Append the rest of the rows to the "AAPL" item
collection.append('AAPL', aapl[100:])

# Reading the item's data
item = collection.item('AAPL')
data = item.data
metadata = item.metadata
df = item.to_pandas()

Concepts

PyStore provides namespaced collections of data. These collections allow bucketing data by source, user or some other metric (for example frequency: End-Of-Day; Minute Bars; etc.). Each collection (or namespace) maps to a directory containing partitioned parquet files for each item (e.g. symbol).

A good practice it to create collections that may look something like this:

  • collection.EOD

  • collection.ONEMINUTE

Known Limitation

PyStore currently only offers support for local filesystem. I plan on adding support for Amazon S3 (via s3fs), Google Cloud Storage (via gcsfs) and Hadoop Distributed File System (via hdfs3) in the future.

Requirements

PyStore currently works with:

  • Python 3.5 or higher

  • Pandas

  • Numpy

  • Dask

  • Fastparquet

Tested to work on:

  • Linux

  • Unix

  • macOS

Acknowledgements

PyStore is hugely inspired by Man AHL’s Arctic which uses MongoDB for storage and allow for versioning and other features. I highly reommend you check it out.

Contributions welcome!

License

PyStore is licensed under the GNU Lesser General Public License v2.1. A copy of which is included in LICENSE.txt.


I’m very interested in your experience with pystore. Please drop me an note with any feedback you have.

- Ran Aroussi

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyStore-0.0.2.tar.gz (14.2 kB view details)

Uploaded Source

File details

Details for the file PyStore-0.0.2.tar.gz.

File metadata

  • Download URL: PyStore-0.0.2.tar.gz
  • Upload date:
  • Size: 14.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyStore-0.0.2.tar.gz
Algorithm Hash digest
SHA256 5ccae91186669c2d6f48bd57915a2eed200393bc629d3e8654ac6f0dde111bc3
MD5 3333578c9fc24a741d5f3aed82ffb96e
BLAKE2b-256 c6a23350d317b446a64a6f604d66aec07961e2e0f7d7982c7f0c3fdc60600c45

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page