Skip to main content

Portfolio analytics for quants

Project description

Python version PyPi version PyPi status Travis-CI build status PyPi downloads CodeFactor Star this repo Follow me on twitter

QuantStats: Portfolio analytics for quants

QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to understand their performance better by providing them with in-depth analytics and risk metrics.

Changelog »

QuantStats is comprised of 3 main modules:

  1. quantstats.stats - for calculating various performance metrics, like Sharpe ratio, Win rate, Volatility, etc.

  2. quantstats.plots - for visualizing performance, drawdowns, rolling statistics, monthly returns, etc.

  3. quantstats.reports - for generating metrics reports, batch plotting, and creating tear sheets that can be saved as an HTML file.

Here’s an example of a simple tear sheet analyzing a strategy:

Quick Start

%matplotlib inline
import quantstats as qs

# extend pandas functionality with metrics, etc.
qs.extend_pandas()

# fetch the daily returns for a stock
stock = qs.utils.download_returns('FB')

# show sharpe ratio
qs.stats.sharpe(stock)

# or using extend_pandas() :)
stock.sharpe()

Output:

0.8135304438803402

Visualize stock performance

qs.plots.snapshot(stock, title='Facebook Performance')

# can also be called via:
# stock.plot_snapshot(title='Facebook Performance')

Output:

Snapshot plot

Creating a report

You can create 7 different report tearsheets:

  1. qs.reports.metrics(mode='basic|full", ...) - shows basic/full metrics

  2. qs.reports.plots(mode='basic|full", ...) - shows basic/full plots

  3. qs.reports.basic(...) - shows basic metrics and plots

  4. qs.reports.full(...) - shows full metrics and plots

  5. qs.reports.html(...) - generates a complete report as html

Let’ create an html tearsheet

(benchmark can be a pandas Series or ticker)
qs.reports.html(stock, "SPY")

Output will generate something like this:

HTML tearsheet

(view original html file)

To view a complete list of available methods, run

[f for f in dir(qs.stats) if f[0] != '_']
['avg_loss',
 'avg_return',
 'avg_win',
 'best',
 'cagr',
 'calmar',
 'common_sense_ratio',
 'comp',
 'compare',
 'compsum',
 'conditional_value_at_risk',
 'consecutive_losses',
 'consecutive_wins',
 'cpc_index',
 'cvar',
 'drawdown_details',
 'expected_return',
 'expected_shortfall',
 'exposure',
 'gain_to_pain_ratio',
 'geometric_mean',
 'ghpr',
 'greeks',
 'implied_volatility',
 'information_ratio',
 'kelly_criterion',
 'kurtosis',
 'max_drawdown',
 'monthly_returns',
 'outlier_loss_ratio',
 'outlier_win_ratio',
 'outliers',
 'payoff_ratio',
 'profit_factor',
 'profit_ratio',
 'r2',
 'r_squared',
 'rar',
 'recovery_factor',
 'remove_outliers',
 'risk_of_ruin',
 'risk_return_ratio',
 'rolling_greeks',
 'ror',
 'sharpe',
 'skew',
 'sortino',
 'adjusted_sortino',
 'tail_ratio',
 'to_drawdown_series',
 'ulcer_index',
 'ulcer_performance_index',
 'upi',
 'utils',
 'value_at_risk',
 'var',
 'volatility',
 'win_loss_ratio',
 'win_rate',
 'worst']
[f for f in dir(qs.plots) if f[0] != '_']
['daily_returns',
 'distribution',
 'drawdown',
 'drawdowns_periods',
 'earnings',
 'histogram',
 'log_returns',
 'monthly_heatmap',
 'returns',
 'rolling_beta',
 'rolling_sharpe',
 'rolling_sortino',
 'rolling_volatility',
 'snapshot',
 'yearly_returns']

*** Full documenttion coming soon ***

In the meantime, you can get insights as to optional parameters for each method, by using Python’s help method:

help(qs.stats.conditional_value_at_risk)
Help on function conditional_value_at_risk in module quantstats.stats:

conditional_value_at_risk(returns, sigma=1, confidence=0.99)
    calculats the conditional daily value-at-risk (aka expected shortfall)
    quantifies the amount of tail risk an investment

Installation

Install using pip:

$ pip install quantstats --upgrade --no-cache-dir

Install using conda:

$ conda install -c ranaroussi quantstats

Requirements

Questions?

This is a new library… If you find a bug, please open an issue in this repository.

If you’d like to contribute, a great place to look is the issues marked with help-wanted.

Known Issues

For some reason, I couldn’t find a way to tell seaborn not to return the monthly returns heatmap when instructed to save - so even if you save the plot (by passing savefig={...}) it will still show the plot.

P.S.

Please drop me a note with any feedback you have.

Ran Aroussi

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

QuantStats-0.0.56.tar.gz (36.3 kB view details)

Uploaded Source

Built Distribution

QuantStats-0.0.56-py2.py3-none-any.whl (41.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file QuantStats-0.0.56.tar.gz.

File metadata

  • Download URL: QuantStats-0.0.56.tar.gz
  • Upload date:
  • Size: 36.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.4

File hashes

Hashes for QuantStats-0.0.56.tar.gz
Algorithm Hash digest
SHA256 e4ac4f428da8cc15b3c4766a50c78a7f515fff74093513fe75157bad9fc7280a
MD5 b6161319b62264aaf14169bf7d2eeb67
BLAKE2b-256 cea81ab62a34ebe450f2ca79d8b1cfb8fdf9cb9165620f50a1d875fc77a6d2ff

See more details on using hashes here.

File details

Details for the file QuantStats-0.0.56-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for QuantStats-0.0.56-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5cd1b1ec84533ee54298818ce0dbf8a980cdf5d076ee3c1111bb87fa4c0d49b1
MD5 4988c58e4a84244e99c763786cd88347
BLAKE2b-256 6c37af8c7846f61b8ea6d7fc338a7920627f99c014829ee1475043fa80616d41

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page