Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Python versions GitHub license

Why Should You Care?InstallationUsageRoadmapLicense


Why Should You Care?

Since there is already FuzzyWuzzy that implements the same string similarity calculations you might wonder why you would want to use RapidFuzz. There are mainly two reasons:

  1. It is MIT licensed so in contrast to FuzzyWuzzy it can be used in projects where you do not want to adopt the GPL License
  2. While FuzzyWuzzy only used python-Levenshtein for the levenshtein calculations and implements the other functionalities in Python, RapidFuzz's implementation is mostly written in C++ and on Top of this comes with a lot of Algorithmic improvements. This results in a 5-100x Speedup in String Matching.

Installation

RapidFuzz can be installed using pip

$ pip install rapidfuzz

it requires Python 3.5 or later and a C++ Compiler with C++17 support, which should be given on all current systems

Usage

> from rapidfuzz import fuzz
> from rapidfuzz import process

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
  96.55171966552734

Partial Ratio

Token Sort Ratio

Token Set Ratio

Process

currently no string preprocessing is done so your responsible for removing unwanted characters and to lowercase the strings if thats what you want

> choices = ["atlanta falcons", "new york jets", "new york giants", "dallas cowboys"]
> process.extract("new york jets", choices, limit=2)
  [('new york jets', 100), ('new york giants', 78.57142639160156)]
> process.extractOne("cowboys", choices)
  ("dallas cowboys", 90)

Roadmap

  • build python wheels using manylinux container in CI
  • add more Unit tests and run them in CI
  • add more Benchmarks and run them in CI
  • add functions for string preprocessing (e.g. lowercase and remove everything but characters and numbers)

License

RapidFuzz is licensed under the MIT license since we believe that everyone should be able to use it without being forced to adopt our license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed aswell. A Fork of this old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-0.0.8.tar.gz (12.6 kB view details)

Uploaded Source

File details

Details for the file rapidfuzz-0.0.8.tar.gz.

File metadata

  • Download URL: rapidfuzz-0.0.8.tar.gz
  • Upload date:
  • Size: 12.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.6.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.6

File hashes

Hashes for rapidfuzz-0.0.8.tar.gz
Algorithm Hash digest
SHA256 780ac87d48b79b3aa67c328b170bb52d04984c2286ccafe643babad3279315f7
MD5 b0d1377e2d19d1a988f2b8af5f621979
BLAKE2b-256 794e448562f4ffd9c7054af6049ace1eb8ac7a8c490b8e6286410a10ce0bf92d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page