Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Gitter chat Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are two aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. More details on these performance improvements in form of benchmarks can be found here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

I generated a list of 10000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

scorer Benchmark

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

extractOne Benchmark

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.1.0.tar.gz (261.6 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.1.0-pp37-pypy37_pp73-win32.whl (287.6 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.1.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl (594.2 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (459.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.1.0-pp36-pypy36_pp73-win32.whl (287.6 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.1.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl (594.2 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (459.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.1.0-pp27-pypy_73-win32.whl (235.5 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.1.0-pp27-pypy_73-manylinux2010_x86_64.whl (498.8 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-pp27-pypy_73-macosx_10_9_x86_64.whl (355.7 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.1.0-cp39-cp39-win_amd64.whl (383.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.1.0-cp39-cp39-win32.whl (296.5 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.1.0-cp39-cp39-manylinux2010_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-cp39-cp39-manylinux2010_i686.whl (4.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.1.0-cp39-cp39-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.1.0-cp39-cp39-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl (519.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.1.0-cp38-cp38-win_amd64.whl (383.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.1.0-cp38-cp38-win32.whl (296.7 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.1.0-cp38-cp38-manylinux2010_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-cp38-cp38-manylinux2010_i686.whl (4.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.1.0-cp38-cp38-manylinux1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.1.0-cp38-cp38-manylinux1_i686.whl (4.9 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl (518.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.1.0-cp37-cp37m-win_amd64.whl (380.6 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.1.0-cp37-cp37m-win32.whl (295.2 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.1.0-cp37-cp37m-manylinux2010_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-cp37-cp37m-manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.1.0-cp37-cp37m-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.1.0-cp37-cp37m-manylinux1_i686.whl (4.8 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl (515.9 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.1.0-cp36-cp36m-win_amd64.whl (380.7 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.1.0-cp36-cp36m-win32.whl (295.1 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.1.0-cp36-cp36m-manylinux2010_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-cp36-cp36m-manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.1.0-cp36-cp36m-manylinux1_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.1.0-cp36-cp36m-manylinux1_i686.whl (4.8 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl (517.1 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.1.0-cp35-cp35m-win_amd64.whl (378.0 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.1.0-cp35-cp35m-win32.whl (292.7 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.1.0-cp35-cp35m-manylinux2010_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-cp35-cp35m-manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.1.0-cp35-cp35m-manylinux1_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.1.0-cp35-cp35m-manylinux1_i686.whl (4.8 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.1.0-cp35-cp35m-macosx_10_9_x86_64.whl (502.7 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.1.0-cp27-cp27mu-manylinux2010_x86_64.whl (3.1 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-cp27-cp27mu-manylinux2010_i686.whl (3.0 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl (3.1 MB view details)

Uploaded CPython 2.7mu

rapidfuzz-1.1.0-cp27-cp27mu-manylinux1_i686.whl (3.0 MB view details)

Uploaded CPython 2.7mu

rapidfuzz-1.1.0-cp27-cp27m-win_amd64.whl (299.2 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.1.0-cp27-cp27m-win32.whl (240.2 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.1.0-cp27-cp27m-manylinux2010_x86_64.whl (3.1 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.0-cp27-cp27m-manylinux2010_i686.whl (2.9 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.1.0-cp27-cp27m-manylinux1_x86_64.whl (3.1 MB view details)

Uploaded CPython 2.7m

rapidfuzz-1.1.0-cp27-cp27m-manylinux1_i686.whl (2.9 MB view details)

Uploaded CPython 2.7m

rapidfuzz-1.1.0-cp27-cp27m-macosx_10_9_x86_64.whl (394.3 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.1.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.1.0.tar.gz
  • Upload date:
  • Size: 261.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0.tar.gz
Algorithm Hash digest
SHA256 abd0079804c865e5cc20d943d4d2b3d3f0eed5a8e69c0cc9dd5cccf225d7f4c7
MD5 435e2974b72b4177b3ffcd6da1e848f2
BLAKE2b-256 3977f9ae8e31db3d1eb83ba8227757954200eb9ad61940705f092062f81b87cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 287.6 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 9c67da574b7e6e82f8962b68f4a47e7357ece379ab4f3cb80e798a8252d68612
MD5 b1687f578dd474805eae71bada4d7f03
BLAKE2b-256 08a93c95e9553c544052b042292782ca3ebe9af3250b2aa30da2b0e12cd01269

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 594.2 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f12cb68c38b53d2f253dc3b1f3ee2c19a8054a83ce9b366f59681dadf52f14c
MD5 a887911a5be146102e8b9b81a710850f
BLAKE2b-256 d470079f8beb740594f58cc6aeb564b4e82141a9ada6a4427048b808fae2e230

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 594.2 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e785b687deb3145fef70ce246202524f73fe4ed7ee09f0f083d21dd19781bd66
MD5 7c35426cac0b5ff8eaca9a86e51370d6
BLAKE2b-256 aae59327c4aa9a50862b6d044ae3cea7c5131a84a27f25bb9e8101abafcd8ca0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 459.3 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1c871231ec9100eb566b1f395263f864105e14708a107bd211d6df017dc7df87
MD5 26b68a6964b64536651f1a3e31ed6e4e
BLAKE2b-256 4593a84754684e30c2c7dcc29ef95821adedace1d57e47596d1c841af5ca4f99

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 287.6 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 7750145feb5a56e85962290c9c1edf9a5e5013d1b60ab0b8897eb7a3fb9f8472
MD5 fb995762409517381d1a6b2b8425ca41
BLAKE2b-256 5657eb860db3851be8551033571052d8e332f59f0fdc2dd7ea711a62fbe344e8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 594.2 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d27ac11afe71f318fefb5ac4f739da78a49649e2591d9c0f0b89bd321aa7489e
MD5 28ab84c82520182c756692280b83d2cc
BLAKE2b-256 45fe6c8e3f06c88d2b365d831aa6b795a46ec24d5cbd16a405b5b39e4173bf0b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 594.2 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f07e84648e437082a9cfb5bd3e74411f33f6d5c8184c5b211c9e4be88a60af9b
MD5 c79a65bdf17cccf12727d9b7aa16ecbd
BLAKE2b-256 69099100745311022b73745a788bc9c23d9963e1d774463ac04586f657cf25b4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 459.3 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40df6dd0f09321a88d4affa9d9e69351820b5a44e30c039c2c6c7a47a952cdb2
MD5 2f07832ed4dc4d5307088095537b9f1a
BLAKE2b-256 90bf1fad83fdf87477ca14cd466e98c76f90c535c62408824fc4a7a82895ca60

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp27-pypy_73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp27-pypy_73-win32.whl
  • Upload date:
  • Size: 235.5 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp27-pypy_73-win32.whl
Algorithm Hash digest
SHA256 27f77137f80c2bfb1c6a900216b4ac8a78c2c0b387eb8f082e77b093f0c47208
MD5 c31f904dcc8ffa550d06b93e00cad80e
BLAKE2b-256 7e092dc4d189edcdf35c7dc1cd8d0216e5f7d41ff89e7ed4f9d1cd3dcbc350d7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 498.8 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 664c1e9750023185758130104ded387b20296d0c6a7a3525ec0aab52b1f257e0
MD5 83d856a8315018feaef6a6857dd00af4
BLAKE2b-256 9bf36c248acc5b761c738c5bfa5c1b22c29deb4d975268eb6214236844c338ca

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 355.7 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09a33d51f86083d5878cb4fbdd51bf4136bea6afdfd937e7931b76dddc146242
MD5 bf5c73f377b6695f17d7f1f94d3a4850
BLAKE2b-256 125a587d9d840f8c0da23b9893f2504648ae4f4c267dbeff7e3a559b3d6b92fb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 383.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 63fdf232c82241cdd08fe22034e8ca525f429281f4ef8eeb1836dc765e5d5656
MD5 8e1d18341d4c0f88821c20457c3674cf
BLAKE2b-256 a7a127b3636c9f369c7c95e09b419f95b97da2b09ca68222bd9e20292153d3b2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 296.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 df9045d84d069451a9e01e781a1b5e8ea90333a04bc28e9e0ffec21d1629bddc
MD5 105e14da144fe4b892c0c3aa338839bf
BLAKE2b-256 b1f64428bf8399249cc1432409390ea18c9bc0d224386ae76149f56f1acf1fe5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d670ca4f629106dc0025bd235d5f5007ba8889f97d31641a86ca23fc8ef85291
MD5 aa3f930ca8dbcd7b1631922657eb74ea
BLAKE2b-256 fd987bd22d531c5929cc4efa3022e299cff84822f66e859428d12aa29d135d29

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 418af34f3e1565f3be45ce8ff9ddcb4a8e1729d93c4efef2772b981e133f505b
MD5 20984d4d531b11e859d0be072af1ff55
BLAKE2b-256 8fecb2318f7e7fa42d257ad4e9ec15f47f52f8ef9d454e4628a15eb5cf813e30

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8000b781fc8629a31af1d96e6a298b75986cbc0f954eca3761d5e3d09edf2a5d
MD5 bc120d372b4dc97b1972498b8b1bf2a2
BLAKE2b-256 b42d985ef4f06bdb4347735f64e09b2d267fc4e4b299266f1aad38c46684a229

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9662149de1d074e519a411df3a64b2329cd39a4fe5ff1cc89bdc9b1246c22d10
MD5 3f69af8bdc5b94f43d2a72ec9e63d04e
BLAKE2b-256 c02343fb8513f44ec698e4d7e9f8f16ed29a67d38a9f21bd4d9070fef8071748

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 519.9 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6f289a4364566cdc17c6ff8d3e92ec5987fbbb4c97283ae9e3d5d49037012971
MD5 d0f2bd66d156ebf496ff23602d6bd9bd
BLAKE2b-256 854f112a1b7138d724b5040a6a788728e5eb42117e28ba27323486644b59d890

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 383.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c91a39b850e443eda37337283ec0e4397c0b31b1d952301d3253cdff7efae48d
MD5 e246b80e7c0ccf7bfa84faedf91bee75
BLAKE2b-256 4f9f94e18c4abefbfde27b4a569cf44363cd4785002548abea8deaacba52edcc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 296.7 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 04db8c2645830ca2c98fd5af53b8ece51ca9dde2a046c662ceb898aea7c4891f
MD5 2baeccd148a0b68ac0d88502b5bc73ff
BLAKE2b-256 e120b4a915be7dbd67a05157e3f62f4717588e87f16dd4eb4da10150c2126526

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f3bb26ac1092d93bb284b57488cde684320426059d4f919c3c21a6fbc3b478db
MD5 6c8601ac7ab28d5d4b3dafced299a8bc
BLAKE2b-256 58436edac8d564b10bd3cfb3226f9de707c4515e00b337cd3ae67b29d069e61d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a959455e52c4347ff10dc65b9af1690cc31fe018b4c49f928cfca2e87e544ef7
MD5 373b6fc5a4fc8b90b5593978690393d8
BLAKE2b-256 83be65ba73afce3c4c820c62a53ef1c7f7db6972a94fb39a20b7e9191af20f09

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 51a3e01f347c3f1b85f99702c26f1cda887112dbf7da498e2b6ce01c4477650e
MD5 ccd5c4344a432f49dfd962b92a5bfdaa
BLAKE2b-256 955d118734e2a17582a913a9383c2a3d447670ebadd17c8764bce7abccaed7ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 af6e221455b03c8f2ca01dd6445e59798236de1226b8d5de179b73131f05d29d
MD5 90a2181573bee7498e7ee65d3d57f5c8
BLAKE2b-256 7d10d44c08bd1a9f738313789a064b28deea284797ccabcc8df1136c2605123f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 518.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ffa739e13a4fdbe90e3178c8afcb9bb0fd7c74ab16acf561b2b256218aeaa604
MD5 2cc5a23932406490470d347bf0d9c7da
BLAKE2b-256 cc31a8d49f7544288e043f502842b7fc6aa457791d2cf4a4959cdca89916fd3f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 380.6 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 bb25ecddff7a495dbd4cc397efc12a5dacbaf3b44e8a8fac1f15a65dc14edb3f
MD5 61357eb2b36a63ea7209cd64e192c551
BLAKE2b-256 2418d6b0a73ffdf9310fe0b851f492212a8f99638af43e9a12badeed034c69ce

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 295.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 137f9e4cc45f61a228c175e325dd1dac8017cd9a3fe3fadf4b23847b2421d739
MD5 83bd188f4ba69439751bc7d23f4df2b1
BLAKE2b-256 9fd255fef6f16c5d2190b36fcea1cbdeead46ca835281bde1e1d4ae464f3233c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1a45ae7baf18a0ae0cc6a92df1d8aceefbdb25a21b6c71062e458a94f1b528a8
MD5 6b8b3df6cb9dc7c3ac996f22a9d7ff5e
BLAKE2b-256 6b21f7e62c09e86ccf67c4f7cd03f1d35ec899957ec1060711dad619c4d8157a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 abe31da8eb7bbd2bdc85729614817f41baa6bd920471952fb253a6af4e221d5f
MD5 8725509a086fdc6bc24c2ee1a966f24d
BLAKE2b-256 3d95792151ee4192740cd2dcd32759bad269239f52aec82e3477f7864da79335

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 90a4198c550428f3ad1b64a8b657ec5e863bdc52468a6bf8ae13375cac5d2cad
MD5 954d7c56875d8609181a502b5eb051ac
BLAKE2b-256 3d9f477a8d2190b37cfa4d59256942704b02fab6c2121b112879102105432600

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 ab588d3692bf429b0595bdb1a14804a602f38bb186e133d217e557a3ef4e1db0
MD5 e6a7b72a4485503280055a1f5387e4cb
BLAKE2b-256 c8f05ab0c5e64fce73aafac4b80eb2737f7bcff975c47986b822168c55d3454e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 515.9 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7426e5602065837f9a1f383de14dcf8dc665b21e39543ea8002a9c35355545e6
MD5 56d2fcc5799fa0715330b19b465b2696
BLAKE2b-256 1e0b86b6203d35dde41840020d9844b160a8f4278baf2ff2319ed09f05b09deb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 380.7 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d28b601a8967b0abd64cad7111186861f4305c7111e7498857b4b42c9f305c7f
MD5 487918cf857be6925ff9d0859edac693
BLAKE2b-256 cf11dfd9b9982f9570f006b60a20f11e100765c27491152070d263a213d523df

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 295.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 34634a52a15037b366a9ef4012749e3b31f3a087fac11b2dfc210995473cca76
MD5 87a2621111e7cb607cdeae33c73b0c05
BLAKE2b-256 751d4d088b51855b3547274e8c3ebc9ee8d78d08e20f3d0dc6fbf17c81ea0e7b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7ddb8fec27000050dbae3a61bd58b0b634d2d5962b50f8765e65be98225829a8
MD5 77b43cd4c4ce6b225609178054ec8dcd
BLAKE2b-256 ff802328e1842a4694ed0f689b005a641cf8f9c4ecab4e78643e61a0c8a03bf9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b2805ad899fbe6b2873870819044f2918c9e2918fc79b26c0beb12675d2482f7
MD5 659d0955aa86e67bd12c934630547f84
BLAKE2b-256 c4e4128fe86a7c85c28aa727b249adb35f28fa6f04928f398024c5eb780385b1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fd090d0eadbec3fb8745ffe8e95e84a918cd65652f24017fb82ce5e3c2bd3229
MD5 2dae48bc600714190c02f55e1b74ec43
BLAKE2b-256 97238764c1b56312929f4f1b8cd86833845e5f8986a206a3d3d07ad37adb643c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 061e90686fd21e61cc037b77b6cae762242dd916da143d7f038e6296d14d9386
MD5 1f60751026073ee797df2ae14be80761
BLAKE2b-256 1ffe4fb48754067e443377fcdb6dd8386740f9293078a919bdd92a4afe58f9a9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 517.1 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aef7b24384674d8cf94b1b87d754179d4b60b0adfc71d4f8e55376a74760d121
MD5 e0635a32fb41c5203cfbc0a0a2530a23
BLAKE2b-256 db2ed86436dc60eb349529a295264d7a48d47a42667abd62cec67c4b4ae7cbe0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 378.0 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 3dfa3d75d277e7352635f489a2db217bf48e21c1247c80940093af20ceebd62d
MD5 10274b645e8c9c1533d4c785afe2ce12
BLAKE2b-256 cbd12035917169bb05afb753fdf78a65600da7e352e767dc7ad566ce19df950f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 292.7 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 aad76338006732e1d6d81d92c291acb18e3cbd586cc9daceedd0803021afa38a
MD5 e3a3c958f0104af36c437fe96dcb0cfa
BLAKE2b-256 7524ba24350d7ba3e407ede3c0d1acab079d2666c130b294ec4fe7f2ff246daf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0c07b6ba2b8e2f0015a056a93a7e790dd2ecfbb83817d06824f4310317357061
MD5 a3856080f76a9c35a5495d42f82569c2
BLAKE2b-256 50bfc6c2b76e1faa6394e2aa6ec4d6bea45b17a59efa058e72bff39a077591e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0e48b7e44d5814ffc0a772020fdb0d42e1c712a5e0f63f20b639181226906024
MD5 ba5866ab14d7923bd93868a23936cc81
BLAKE2b-256 4000f32fb40e1c5da6cf0a6e017bacdecb3151c8621ccaae5f3cac538fa0c443

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c28e7d977cf49918e451a2c7b5bd63a172992866fbdb272519da0b433e356d15
MD5 4262e6ea86d6262ddc297150ef507849
BLAKE2b-256 41a47243ccfbf9eb4ef3a8bc6af349090385d811d33b1ab327c5962ec55fdb60

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4afc6b73bb7d6ba6c66777ffad09ad8355370153e1cb2b9ee55c79146df727aa
MD5 61124e0f88d1c5ed41d1d6266fe6079c
BLAKE2b-256 7691d450c853a36852a3cc4c93347ba1b46dd1ac60f23ff559d9598eb72d4477

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 502.7 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 00e2ffb2fbc5f5027a00c8d54094318dc9563fb6618f3a55e9ca3141cc5e6dbc
MD5 e0c00d348e3cc037ea6595f714d2720c
BLAKE2b-256 57e951c8a74daa9a7f00288a51f85dce1386312d7a4cc6cb417f13592b5b344b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4b11a5bba14975c9cdeae8fa581cdcbf534fe9c5691644ecbf15a40404906490
MD5 bac04784cc54098209298c9499c23a0a
BLAKE2b-256 cd2ee270fd97885006a32721ccc706922b365a38d9552522ce6693f96e8ff820

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 72d6d4971575a1498f8a38b18fbae3d01119fd0817346b58b7e6b26efbf564f5
MD5 7bf8ede8347d186cbb2a10b94e66aec1
BLAKE2b-256 7c6e0afbda0165502b36629a0c55d0464c80f9e7e10ae9528ba51afbcb8d3f3c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ee16d96024a36a21dd65c0385e64171085d8de95da26dc4017acfe13fc02df5d
MD5 c0408cdd236ff26eca7156d7a9471743
BLAKE2b-256 82f5a139818b718e63c8531cc5945bc46997b616260f3bf31829130fccff4462

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 7604d82434dbe5520f9399b904f2e69c3ce8a42755899835ffdbc11dc1bf9b09
MD5 60065768182c2f2b5d9d027b0c30cb42
BLAKE2b-256 a7c87870f17bffa973ca0d06f7c0ad66b9d5d02aae6bff93710fff8cc3edd9e6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 299.2 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 abbd927612bc2e167d6a4baec15f8b5537e653320ff7255aae0f0ff2cc7afcbf
MD5 cee86cf1837af921663d5e9380669b73
BLAKE2b-256 fcf6f8ce62d87442c4d7ba4da6926bd28cfa9a667d82c67302231f7d440d9024

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 240.2 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 0b80705e32861b97093f20760355df526e20b6cbe543a865b83f98bef40854de
MD5 bc287ef07ab91b0498140e5e5f84df3f
BLAKE2b-256 7b822d2897a9daddefdbe6dc8fca28bbf2089f1f0c99521a46c42a250db20c1f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 90f39bfacf5f6e75df4a1910decd4be593f48f8f06fc93cf52a4087d5e8ab57b
MD5 aff04e72f403ca0bb7d0ed53fbf0d37b
BLAKE2b-256 a38bf7daebfe7f7d3210527d5c916cefd524ce1e1761b09f46083864e11e75f4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c73f8ce7081d3e99f3002533eb8d25f0a7cccc0468b3d7f3fabec0694689abf2
MD5 ad3731103f082c66bcee58c15a0fbf90
BLAKE2b-256 1e4e44f573005be515f6d375e6be51cb6fed0468d8ae517bc20c3ed71a87ed52

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cfb07f6c7636c7f911664bf2ec8074b4245f7c90934c7f555e3633a689739816
MD5 f33374cd96a4e3ce882f457461eea61f
BLAKE2b-256 e234aa38a77316c1da951885c6a7c6cea7ff563303a1e77e0459d4a78f43c90b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fd15ab08668ab1b3896dfcde57c6c4c5c9b0b349f00fb8d459950c06d5c732ec
MD5 c81b5f636d8b3811e840a03dc6bbf6c7
BLAKE2b-256 4ebde2efc8fddc61214dc5fb4a122bd8dd740e093195e0a2186d5fc1aeda1c4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.0-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 394.3 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f86a288d120e59e47d041f4d4a32f6706cec22bcb30e3c1ebf24a66b82bdb707
MD5 7a15dc47b101350971e0595654a208ef
BLAKE2b-256 faa82b6250eb33d553054218c2ad2239f655bf70106422fd667aab539a61b022

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page