Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Gitter chat Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are two aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. More details on these performance improvements in form of benchmarks can be found here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

I generated a list of 10000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

scorer Benchmark

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

extractOne Benchmark

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.1.1.tar.gz (261.8 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.1.1-pp37-pypy37_pp73-win32.whl (287.6 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.1.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl (594.2 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (459.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.1.1-pp36-pypy36_pp73-win32.whl (287.6 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.1.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl (594.2 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (459.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.1.1-pp27-pypy_73-win32.whl (235.3 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.1.1-pp27-pypy_73-manylinux2010_x86_64.whl (498.9 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-pp27-pypy_73-macosx_10_9_x86_64.whl (355.6 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.1.1-cp39-cp39-win_amd64.whl (383.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.1.1-cp39-cp39-win32.whl (296.9 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.1.1-cp39-cp39-manylinux2010_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-cp39-cp39-manylinux2010_i686.whl (4.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.1.1-cp39-cp39-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.1.1-cp39-cp39-manylinux1_i686.whl (3.3 MB view details)

Uploaded CPython 3.9

rapidfuzz-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl (520.6 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.1.1-cp38-cp38-win_amd64.whl (383.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.1.1-cp38-cp38-win32.whl (297.2 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.1.1-cp38-cp38-manylinux2010_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-cp38-cp38-manylinux2010_i686.whl (4.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.1.1-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.1.1-cp38-cp38-manylinux1_i686.whl (3.3 MB view details)

Uploaded CPython 3.8

rapidfuzz-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl (519.7 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.1.1-cp37-cp37m-win_amd64.whl (381.2 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.1.1-cp37-cp37m-win32.whl (295.6 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.1.1-cp37-cp37m-manylinux2010_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-cp37-cp37m-manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.1.1-cp37-cp37m-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.1.1-cp37-cp37m-manylinux1_i686.whl (3.3 MB view details)

Uploaded CPython 3.7m

rapidfuzz-1.1.1-cp37-cp37m-macosx_10_9_x86_64.whl (516.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.1.1-cp36-cp36m-win_amd64.whl (381.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.1.1-cp36-cp36m-win32.whl (295.4 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.1.1-cp36-cp36m-manylinux2010_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-cp36-cp36m-manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.1.1-cp36-cp36m-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.1.1-cp36-cp36m-manylinux1_i686.whl (3.3 MB view details)

Uploaded CPython 3.6m

rapidfuzz-1.1.1-cp36-cp36m-macosx_10_9_x86_64.whl (518.0 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.1.1-cp35-cp35m-win_amd64.whl (378.7 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.1.1-cp35-cp35m-win32.whl (293.0 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.1.1-cp35-cp35m-manylinux2010_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-cp35-cp35m-manylinux2010_i686.whl (4.8 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.1.1-cp35-cp35m-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.1.1-cp35-cp35m-manylinux1_i686.whl (3.3 MB view details)

Uploaded CPython 3.5m

rapidfuzz-1.1.1-cp35-cp35m-macosx_10_9_x86_64.whl (503.1 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

rapidfuzz-1.1.1-cp27-cp27mu-manylinux2010_x86_64.whl (3.1 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-cp27-cp27mu-manylinux2010_i686.whl (3.0 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ i686

rapidfuzz-1.1.1-cp27-cp27mu-manylinux1_x86_64.whl (2.2 MB view details)

Uploaded CPython 2.7mu

rapidfuzz-1.1.1-cp27-cp27mu-manylinux1_i686.whl (2.1 MB view details)

Uploaded CPython 2.7mu

rapidfuzz-1.1.1-cp27-cp27m-win_amd64.whl (299.7 kB view details)

Uploaded CPython 2.7m Windows x86-64

rapidfuzz-1.1.1-cp27-cp27m-win32.whl (240.7 kB view details)

Uploaded CPython 2.7m Windows x86

rapidfuzz-1.1.1-cp27-cp27m-manylinux2010_x86_64.whl (3.1 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.1.1-cp27-cp27m-manylinux2010_i686.whl (3.0 MB view details)

Uploaded CPython 2.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.1.1-cp27-cp27m-manylinux1_x86_64.whl (2.2 MB view details)

Uploaded CPython 2.7m

rapidfuzz-1.1.1-cp27-cp27m-manylinux1_i686.whl (2.1 MB view details)

Uploaded CPython 2.7m

rapidfuzz-1.1.1-cp27-cp27m-macosx_10_9_x86_64.whl (395.1 kB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.1.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.1.1.tar.gz
  • Upload date:
  • Size: 261.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1.tar.gz
Algorithm Hash digest
SHA256 5ad59cfc2c9f6a214c814de8b9e94309f82943a902f7acea307d9d5be2b0cccb
MD5 2228a9658d0b61331165290ea235d7b9
BLAKE2b-256 638edc6bb7849d61bf8ca2a94ed142dde7ee4a36f8d92243d16490979cdfc359

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 287.6 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 164ad3790d361d5264972c4cfec97f1ff3ea9a7b451208e84ca873f4a88bda06
MD5 1180df830b3c487d2ac862232ebf5856
BLAKE2b-256 87ad3324c4f72aaa20e6bee0fbddb3be6fc4d13be7de811cd3ee1d64988e9b00

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 594.2 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f50359da4303c903269e88c00db8ad6cd6f62480cdba2aae3697519a70dcbbec
MD5 179a237ed656e3fd6a6b5fb7586a376f
BLAKE2b-256 f052d58d0995feee06b8ea2afdb49256f50b911c68d84d5c1372d86ec9686d0a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp37-pypy37_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 594.2 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e6fb951b8d9bde314f024a27b36494fc04a97d7393ab0777e74f9526a7f28da4
MD5 0e3add825f1f910bef370e70c77451a4
BLAKE2b-256 1e36391844eae95133df918b4cc44a08c820506a7c5db393428fa4a2cb317ea8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 459.5 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a6cf3263dec303acc034b74b4060492fea898f05855947b024e9aade5ecc264e
MD5 577181d9444c702f4dd0de88a86da84a
BLAKE2b-256 8933cfab2a7e90c8b8aa6d793ef6c68045002ae39fa49aa6056cec7b08e8a4b8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 287.6 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 06edb5a49b487499857b575028182c3f75361c6c22950661c598d36cc584af3c
MD5 12ac4f93247f01cc9c65166d5d8f82e0
BLAKE2b-256 df56f3fa27ee7b0348847f8695f2512d9a2fd8f782a62b7b6a05b617d063f69c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 594.2 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 85ed82af38aaed64e34adcbdeb629d2e514f306ca8539e92906028a792228113
MD5 3a95110ee0a1f2938ad40844cbcfd962
BLAKE2b-256 e2806bddbc4567be01bd2f0ad75d89abaeb598a9112dc0c5a3084ddd7df42162

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 594.2 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3f885029755fcaea0449d3bb7cbbc551b24e1e9441fdc273472d81c02f30ae7f
MD5 305154d379ab27a7251a77893aaecc9a
BLAKE2b-256 bebd961544d4c90eb9a9af431e38001a3f152ef6c0f5131b28f14ebf94f8d878

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 459.5 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d08a0bb5a6cd164d899a8f17fece7f5e54e040ccbe17dd38d56603b1ee3319a
MD5 bad1f92ce2b72aea276bcf6cb17780f1
BLAKE2b-256 7c64a23249694983e25b09788e31417d353559087e50da66eb9ea80c06244f04

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp27-pypy_73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp27-pypy_73-win32.whl
  • Upload date:
  • Size: 235.3 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp27-pypy_73-win32.whl
Algorithm Hash digest
SHA256 8ecd71bb161953daf7524f095d9484791c984bfc93b8f9ea06b16ef4143dee4a
MD5 e66ad34054e5c870fd4b9a673d2e9a7c
BLAKE2b-256 881d03b2fd48b41a84f5dc50f345987fea26a74758ff5dfc3cd29c8b54c5c2c4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp27-pypy_73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp27-pypy_73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 498.9 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp27-pypy_73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f4f46633dfdac0a25fe53893f8f42213fa22636f70f1c77912d190cd5b9b5fa0
MD5 f583acfe3a2e62f45be4046e070bb2c9
BLAKE2b-256 f5c428cd0f85c684981b192dfc01119fc110ff72674eae256c918d74ecc192e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-pp27-pypy_73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-pp27-pypy_73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 355.6 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-pp27-pypy_73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7821472adb6e416479a7e1d6ed1dbe69627fc0fc648903a7b58fe84cb8b177f
MD5 01db6d6b015552cff0e3cd9d3c353487
BLAKE2b-256 65d23f69dc27fc63512875bfc518eaeadd8e73847cd77d190751b6c9b1f5034c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 383.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 79bdac4250d1dd33ec7abaa4b5a047d96f21a3f8c5f736f47371ad17c2fa10ac
MD5 9954d43f5cade6364986bd2e63bd4579
BLAKE2b-256 e8d6a3828cb4eb3a607583bd680c34dd940dcf7d1bd6ea94fc2954a4d862608c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 296.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2b657bb9cc69d5729d1f0799f13ca9632fccba1a588bef78012bdd51f07b7ee8
MD5 d982c465831a95709ea41293b864aadb
BLAKE2b-256 69a83ba4b41cb9ad1cdb577a073eb0102b9b07b7ae9461143e3c4ef6aa4ede10

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 74196c59e16a141e61161bd902f7cddab73571ee89951f1fd6acba6a7cc8a131
MD5 2f5b8edd53944a71e338363feed0a889
BLAKE2b-256 8f49b6d16074130174637a8f933e9ef007613e686c78940ac51849ea746a2928

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b01988ceb5fa891828485d3861d629716b6fe28d7d632e643c0fd8a847612c54
MD5 8364bc649c84b47cb0fd3a2757a95694
BLAKE2b-256 39a695d36d3ad3c61772ea82e461cfa5a9dbab731fef3a7af3f66aad7a3c4725

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6a6447d9612cc7ba0dfc93e5d4a92a1d8022bf4f693fe36dfd4a79326e91c151
MD5 ffc70840c706838893112452283a3b4d
BLAKE2b-256 1d5be5bd1a6dcc04b09877aa13208d43559231d1e67270a6665fbc6601a79b6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 fadbf1ccfdcbba169db24704325421f8389a954cc717512bfa33f2cd3ffc67f7
MD5 f10e2ef307b1c856aad4179b995d80a5
BLAKE2b-256 ad5a0af5c824758c45cdcce8291b9dfa73aefa42221d70ef5860427276142d5d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 520.6 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8548e2a9462cccfd26529eed6f9a891f48e55c800c08cb8ed2c8c612dcc5ff09
MD5 e0a066ffcd8a82a9e36de76014ba1335
BLAKE2b-256 045436904cc7a55a0524a655493c91526773f64cb64aa10e382d4f9cd40168b3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 383.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3e6f6c9757823aab42d6216800eb942f31d100a22a07ec666058ccb224ede5ab
MD5 ad264fdf4272685f1e472bfba9fe0e93
BLAKE2b-256 ff44e99bf62dd201b62c5c88de7cc28aa59997b03040183aa6efcd64c6a04c2b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 297.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 94f73da4a5c783b1743530fd1c85e2311e749f9f7e557360f1d2a87d6a444f94
MD5 9d1f185deed1a8a0a646f8332d3d476b
BLAKE2b-256 bb3928c0219d2a467ed64ad1fbb6ab9d1ce3893d907c496226b2c8c7b0be05f0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3724934e8037befd18901bf7f26cc9e041c3cdfae222e54fe6e6afd6e4cb0e26
MD5 0c43dc04a73f3ff7e46f1a9bb80c265f
BLAKE2b-256 89ac22b9c88619c0720864f459bab3381e572d925d27f02f15297ec268b58c95

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1d858ec78a99ea8e32d86925166434788522f5020ade02648c85bb3fc3f4f6de
MD5 970cf3976204a4702388570c231001f4
BLAKE2b-256 41f81a6452146088da575eb3cb5b69ae35a215a2ed13de488c376d8c96bf4765

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8789b6105168796d7478304a8886e2d735fe63ff60f3641da6d3dedb292fda9d
MD5 12e7c4e383a606c59a341febe6da1fc4
BLAKE2b-256 957e20c4d7b2e17bf8bb327d982bdc48496adde485eaeae4e32d4ba1f2c42898

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bd423368637bd6b56e4e89356ad52bb4501100ba2d5e49ccf08c1f476068e234
MD5 ea30a8f799c788a749f695f05e498438
BLAKE2b-256 f8789dd0dcb7be977975837f8cf9298e17f291d8a346067f64052e7228c68c79

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 519.7 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0dbd7d197d1a590c2671cbc7f67ba6979548deb1827c45963bc48deddc509207
MD5 c5aa9e3b1923c3294b65c795111953c6
BLAKE2b-256 e617b4ff3c4726f957aef19406917b56153383ad7d65a049a7d14816df435756

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 381.2 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 52512ba8940c9fac1eb9c18771ca0cf20ec9d61b48960b8e0f149ae64e73042e
MD5 891a8464b0dd05bcf3cca6f858a5f648
BLAKE2b-256 de095a5a8a9d87eac92daa4fbd88edb7c7ea811f14188fe1c429bd4a8eb7b5b6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 295.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c9c1cde7a546e55d1530ec06840af3781ee3d05e7e21fe0f68203869c2a8bef4
MD5 e26d1665c2c242ad2b1e9056abd531cb
BLAKE2b-256 10369a996eed7a32827e8792aadf33198652406bb10847eba8f93729545f985e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e43d057b5277bdcf2519c30ca9eb8aa52e047f3e92dcbc45c4600a5f760c148e
MD5 65558a36277b5f29e2bd688d2883be65
BLAKE2b-256 6e2cab7c9cd9d301d0e555397896f46ceb078f7dda6751a786c1ba09d0cca4a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 04c4a27b1bd475d36e9003380220a862163a079184043c27e7443c9aded09c86
MD5 33761e4df9f1d0e733f66a1f0d30bd0f
BLAKE2b-256 ffa5ccb681a0a0461220e2361a3eae74c5d0e28216195027d33dfb91059e78ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 3a1039ca6136d957aa30b9743f3f627ef0662a26e8d5f722815866d1cdfb396b
MD5 1ba9389a143870b8f13dc28730e404b4
BLAKE2b-256 420922920b97900adb6ace1c7ba0e405238391cc297d17d2e2f80aeb64bb5fde

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 bbb9a6802231851b6e582c5a7e633e17a333ef3ba5d2da626f43d75c9ce1a96c
MD5 25a78f909e396d47e6fb59f03ec0cd1c
BLAKE2b-256 3ee9fc970661820c7c4e5eafc46c63448ba506f1d8d0ffef2342746e15e816a8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 516.7 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41dc6326d445d8e7afff53f1194ea3a2a7342d578efdc29748fb33eb479c97f6
MD5 4f276cf435c7cd0b47d276dfd6af8f2b
BLAKE2b-256 6eefa3e83ed08ba47a8e8c0805f5dd1df92e0752a7dedf7d2e4f9157ed2d7326

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 381.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c0309d9c19b0ff7f7420022323237a04f717d9ac6867d90ff9daaa55cf6d8535
MD5 b35a7a17aa9c32e43a81606855d3f5dd
BLAKE2b-256 76bc8727fbdf74c701eeb99ea9c8621b675e9c9375b27d7901807563d4fea147

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 295.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 90d6b1c78fb9b51efe5a9a042977339435c8c007e36c8d81ddc21098ff5b9fc2
MD5 a19a0c9699299e002ddf36fe9e28532f
BLAKE2b-256 6606380e00707922bb5612cfdff9677b43c7e20fdae789a9bf2020f508106b7d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 fa1ace30c431073218d7717fa747c2298dbbf269faf42cae1471ec49b62c62f5
MD5 34ef2efa0c64e75430357183d47a8aa9
BLAKE2b-256 b68bb103f28a888cb22043f962e4735c45ccf61a4046325f1de64f4a90c4c34f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e0b316d949f04dfc1953cec35e9caed5cb54d6deb421d6634336c1f000e8d141
MD5 08176ce882a00b1710eee7cf3924acb0
BLAKE2b-256 689f3c7be3dcbb7d8b409c636dafd4a4d4498fe7edff68eca19a3f222bad1a42

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f19aab9a50e5380c5092d3ebfdb3d1d8a778dadde2ceb32ef9c8bfdbda6f0f72
MD5 d51eeaf15f9a71be778ca9d5d46bd2ab
BLAKE2b-256 baa524a05c2205a8c23fb9da03001b611b7d5032c3b93abd636da9f14febaab6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e028da2c1f2032700412f1812509356d19eb776da67921f8564a9863ae870029
MD5 44cd029bbea189cf8d8ace8b1ad688db
BLAKE2b-256 38ed114521853aaf8da054bf0b10a93eadc208e1d9063150d716aa815eca4e9d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 518.0 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4cd9aa9e10b3f47bd64bbdac5a13168725dffbfcf24f1b79d602c1a139823e1e
MD5 96d1fd0be6ad5a365f217907e4eca641
BLAKE2b-256 ed90e2ffb56dccc00233277ae2e488bab82abfdab070040cc750b8805bedeb7c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 378.7 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 31bb95bc8c3425f81f161f07b00a50c67a1d16eac3f4fb5e3bd0fdcdd8b9334f
MD5 2e302bdeb9b971d511c55c330daecd4c
BLAKE2b-256 ab2e81047719ad9c733a063e64c08943a65293315c247ce070ede8a0d112e8ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 293.0 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 932bf1316d15e5cc79f32406d8c96a06749494df4b7c1fdc620b482370a38958
MD5 3131350fa0560316c23c8944076c2c39
BLAKE2b-256 a27b3edeef634e8938244447bc0f6f709d75ea261247208b00f062163b44e46d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 5.0 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f1f10d7118890f14be78e6b01fca1903e6c621c5f7f9c4ad9224440f96f2e8bd
MD5 0f233540b4993462565297e04f0cca5f
BLAKE2b-256 5f69629b9252c8849d18e5d5aea7126059aa18f655e00584f04f7f795d4a8026

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 822adafbc76c2cf2f0966fd9c20683d46b6cf5a09b6020526fb1ab0cc6b3db73
MD5 ea1c19d6f6ad20dd04ba49618ac37908
BLAKE2b-256 c5f953fc0dcb852d4e9059eb93cc1916914fd8a3b8e045855e6c5e303ca744bb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 611751f2164bc2a14f008b6ac45a7d0fd14d145934ddd9a6ece786560deb0148
MD5 860c2f4d466368be209e0a37b32d1aea
BLAKE2b-256 2910389d8bcc66160d7a797057f0633719de3d1da0e0594a7745c3b2fc9f4d29

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d79ace11b1b81f87e6c303ce06b2c0b841938df9694ef6873b94b085cb43827e
MD5 14fa82857a84d20c024930bd99869b94
BLAKE2b-256 4f41ffaae55edd78f31d0ff2e035d1a2c0d0c89aeb89c2fd67cfd7d5c3c54c7d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 503.1 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a795b393dc537aafbfbbc936eec0a6189ae7dc42afe459a62b0be41e30fbd5d8
MD5 e806e3fed02b55456b9bdbbe092f128e
BLAKE2b-256 f357ed14135d1914c3e02e4e5a52dfc513428f05fbe073534da13ccd364986da

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8921f620a995cba93d3cf97a4386abd7633ee78bdbb5cfda4c5a08057edcffad
MD5 bb5bfebc7ea62fc7951e990f50d1ae4c
BLAKE2b-256 48f0ef34d986eaf6d40d7459a0453d17bb543613c39deb2b00d94b4e82a8deed

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27mu-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27mu-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27mu-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 9e3a0daea2bcfda554897586afde99807bacb44672613a4c52f9a87388627e70
MD5 f04b3b80d01aea516c986cd8cf67ad75
BLAKE2b-256 64730d926dd088ac3c72b484d7006909b623f5a67b1c49a9539289429bce4438

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4947c60f073d0970ba8ca7456dd94e610672d79886689363f6175fc9d68cceee
MD5 9ee969825ad5fb0bcbe5b539a3ad5ad6
BLAKE2b-256 8edb4f24e95919db14fe768cefb24a2b2ad70b7c281a0162cb8add0c39d2851f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27mu-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27mu-manylinux1_i686.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27mu-manylinux1_i686.whl
Algorithm Hash digest
SHA256 86056bf87b177e3a4e899bf50ee21da0ac72c27a9e6c5b75b816fa775c3199fe
MD5 c9f33881eb5197aeec54662bcfcc80de
BLAKE2b-256 a883e40ed12a3bfd44cc33ec2b5b8bb4bedf0ca5615825efe2439ddd67c6c8cf

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27m-win_amd64.whl
  • Upload date:
  • Size: 299.7 kB
  • Tags: CPython 2.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27m-win_amd64.whl
Algorithm Hash digest
SHA256 15c9ac1279ce9103dfe377b1a51f0548f6cc08c7d58d6bc45e9f224e5ab310d0
MD5 43d3a721ffbdc9876597677394539f2d
BLAKE2b-256 e81fd367689221a85696d50711868ba258fb18f80175579d28aee63fa97047ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27m-win32.whl
  • Upload date:
  • Size: 240.7 kB
  • Tags: CPython 2.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27m-win32.whl
Algorithm Hash digest
SHA256 d708287eb74f6b432e27ddd0b08a83f76b7b64d818e5066483833067048b06cf
MD5 b3a7e1ac399b1715692630f440d60f44
BLAKE2b-256 1cc04802de8314fa474c0a0f6625655e9be08ba5cb686eed090407a96c73dcd5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 753924c78fd6d754e4640832eebf662e8696ac9c1be9bddf2a530e5d72f6d065
MD5 acde9c5926868afb08cb5d8c9510de88
BLAKE2b-256 689c6b6da8ff591ab4094f5964195fc721f40b5b2eca22ff5336d446563dfb8d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27m-manylinux2010_i686.whl
  • Upload date:
  • Size: 3.0 MB
  • Tags: CPython 2.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c58e5d2a94c09220d03fcac7cf5e5c98ffc76ab0343d12238ae8a140cbccdc7a
MD5 0dfc8ddd412a7246465861f139cc5525
BLAKE2b-256 d59cebb7a2658679951e9f7871b672d5baa79c2b3e4a3f1ad981079dec389fab

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a6633fe5ed0361f4145d01ae8fde8564609f178614bb3341d96a71a9c0b051b0
MD5 c573baa00a8303bd34926f336ac06333
BLAKE2b-256 7c8b328b8933f238fe666c6cc5658c71732de2b4bf30ac675babb667240deb73

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27m-manylinux1_i686.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: CPython 2.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 8c08b696e1d7edc897bd15df549c312276403741271a3e7d779653b757c3bc85
MD5 956f79b19a167ff72bbfa9977215af3d
BLAKE2b-256 2a9ca5d26194d51f9d8a2c9ddf48e20758a816b36b04af58748802387df4aff3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.1.1-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.1.1-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 395.1 kB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/53.0.0 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.1.1-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b491e68620a31d5059ae83a7d6955142d3b68b6852b0da8dacf1f05742ec848f
MD5 48b8e2dbd603a5adeb974c5a4d0e8e2a
BLAKE2b-256 006d38f9466fb613699ffaa360cd583a333ab100f6782540f52bbfbe9562af2d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page