Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Gitter chat Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are two aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. More details on these performance improvements in form of benchmarks can be found here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

scorer Benchmark

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

extractOne Benchmark

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.3.0.tar.gz (233.2 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.3.0-pp37-pypy37_pp73-win32.whl (298.9 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.3.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl (680.2 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (475.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.3.0-pp36-pypy36_pp73-win32.whl (298.9 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.3.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl (680.2 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (475.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.3.0-cp39-cp39-win_amd64.whl (398.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.3.0-cp39-cp39-win32.whl (306.9 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.3.0-cp39-cp39-manylinux2014_s390x.whl (659.6 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.0-cp39-cp39-manylinux2014_ppc64le.whl (665.7 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.0-cp39-cp39-manylinux2014_aarch64.whl (590.4 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.0-cp39-cp39-manylinux2010_x86_64.whl (689.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.0-cp39-cp39-manylinux2010_i686.whl (705.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.3.0-cp39-cp39-manylinux1_x86_64.whl (689.5 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.0-cp39-cp39-manylinux1_i686.whl (705.8 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.0-cp39-cp39-macosx_11_0_arm64.whl (391.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl (500.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.3.0-cp39-cp39-macosx_10_9_universal2.whl (887.0 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.3.0-cp38-cp38-win_amd64.whl (398.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.3.0-cp38-cp38-win32.whl (307.2 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.3.0-cp38-cp38-manylinux2014_s390x.whl (661.5 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.0-cp38-cp38-manylinux2014_ppc64le.whl (670.3 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.0-cp38-cp38-manylinux2014_aarch64.whl (594.9 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.0-cp38-cp38-manylinux2010_x86_64.whl (691.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.0-cp38-cp38-manylinux2010_i686.whl (706.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.3.0-cp38-cp38-manylinux1_x86_64.whl (691.1 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.0-cp38-cp38-manylinux1_i686.whl (706.7 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl (498.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.3.0-cp37-cp37m-win_amd64.whl (396.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.3.0-cp37-cp37m-win32.whl (306.2 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_s390x.whl (657.3 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_ppc64le.whl (667.3 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_aarch64.whl (592.7 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.0-cp37-cp37m-manylinux2010_x86_64.whl (687.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.0-cp37-cp37m-manylinux2010_i686.whl (702.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.3.0-cp37-cp37m-manylinux1_x86_64.whl (687.4 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.0-cp37-cp37m-manylinux1_i686.whl (702.4 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl (497.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.3.0-cp36-cp36m-win_amd64.whl (396.0 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.3.0-cp36-cp36m-win32.whl (306.1 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_s390x.whl (657.7 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_ppc64le.whl (663.6 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_aarch64.whl (591.6 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.0-cp36-cp36m-manylinux2010_x86_64.whl (689.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.0-cp36-cp36m-manylinux2010_i686.whl (703.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.3.0-cp36-cp36m-manylinux1_x86_64.whl (689.2 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.0-cp36-cp36m-manylinux1_i686.whl (703.6 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.0-cp36-cp36m-macosx_10_9_x86_64.whl (499.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.3.0-cp35-cp35m-win_amd64.whl (393.5 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.3.0-cp35-cp35m-win32.whl (303.0 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_s390x.whl (653.7 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_ppc64le.whl (664.7 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_aarch64.whl (589.7 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.0-cp35-cp35m-manylinux2010_x86_64.whl (683.9 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.0-cp35-cp35m-manylinux2010_i686.whl (698.0 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.3.0-cp35-cp35m-manylinux1_x86_64.whl (683.9 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.0-cp35-cp35m-manylinux1_i686.whl (697.9 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.0-cp35-cp35m-macosx_10_9_x86_64.whl (486.6 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.3.0.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.3.0.tar.gz
  • Upload date:
  • Size: 233.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0.tar.gz
Algorithm Hash digest
SHA256 f6a95ed17d7750ca75f11751ab46365c58f37a5d846e2b21d072d7a0e77ffa72
MD5 e301adcab6ae8c74c6d454c1a0233fcb
BLAKE2b-256 4f3290154a9d659dc3edd2021aea389d8f05f35dacfac0f75e015a6c525e3399

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 298.9 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 c92b7e3148a90ac9f8740e4235c64cf5a02d15a4cfbd3aa580e62327e22d4d6a
MD5 94df3bacb4b21ad68409c94ecbea1910
BLAKE2b-256 c792ad17a58e800440ab9f1025d9b33254e6533856a4467cf3e6d60729f703a5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 680.2 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6f97fdca7a43ddb4258ddc2d6a8e960b0f5b369346d8bac02cc20b7b51721eb1
MD5 216456aec81cbe7aeb6b6e0a312b9197
BLAKE2b-256 c7db2e93461d7e9a691eedaceabf83e26a8beb881071e933e22e8e650a2cd4e4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 680.2 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9573c989a78866269ced934a5a345ea44d05f4b69576d91c7e5b21771d19e030
MD5 3c0b86fcea33da223c8a0d32461c53a3
BLAKE2b-256 37f6da13976f70c33684feca95a44ae222f07d6153ec6b8803eb525813a130dc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 475.3 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0ac6016f99dc36d490251c8b0910d7445921ca950ac204a4d299c0a298db8f0c
MD5 8af80b4e616f5c22d8f91739085e8d3b
BLAKE2b-256 f64104cba5cae977f867664baaab75cfd5971baa53fa58db8797ba96f0e4b0fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 298.9 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 3438c6db485dd5a3716a7f2e92a262b05db959f03712c4423b68a32453a5957d
MD5 545a1089093db7d19be380f52330e18c
BLAKE2b-256 15cf0669c7dd63ec566a3593cfb6827d062ba4ea0094015c9ea8cbb1a88a8c85

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 680.2 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ac3bc9341d8f265eb65a66ec88f351851e89a0f22be916ed4e74590e347f159e
MD5 de262258c124e55d9a053c195781484a
BLAKE2b-256 f77a2ed80444bb243033b0145c56b86f29b0a3b951a301d7f40467f77f4768fa

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 680.2 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7e2196346ae5a1a2ac79c780d63983df93c1dbbea8aed910c43ad13c67bddc35
MD5 88afba03dbd5decbb50f0594baf92fa3
BLAKE2b-256 0d2b9ca73a32f0c941f9977621f62eae5545473ffcc41fabb16bbf5fc4891071

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 475.3 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5cadbd3f5df7e02dc11b819af860cb1a5365a49de515b76bf5dad62a3724ebaf
MD5 c9e6b30a117b0ba7448851ba5cf2725e
BLAKE2b-256 b1a914e5569d12383b7f71e99cfecfb88defc735b12ff88fac032a6721427d97

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 398.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5afa7539fb45b3c97fed67ca75a99ad7affce14561a3bd11e1c8d665b20ea8ab
MD5 52b121b9b8758df887ea72f9f9da6dd8
BLAKE2b-256 967a12a6dda24de168252894c75d3d369f994e1601cb5600de3bbd94b6c98dff

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 306.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 460bacd89c129cf1aefc56ae465f642c712aa9b620e74305040a1cf6975cc510
MD5 9ece35e2d3fe27b6d46a73c02a802f14
BLAKE2b-256 8e42ffe66f8d6930f2f56fdd569180886dde57336aeae185aff89aea0dee0223

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-manylinux2014_s390x.whl
  • Upload date:
  • Size: 659.6 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f027a7df163f5f1d13d9ea60bf06d8bc0730194a2d584c3185c3a77c1a145916
MD5 762fd1a60d8492fd86b9486b6025c779
BLAKE2b-256 144657fe73dbcdd7e374482e0c6cb641836ca02482dd7143ce862010b66dc9f9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 665.7 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0e3570ea068e0704f7b43d5228e97c45954dec370114071139fdd9cf731a1750
MD5 942d55fee811fcd37c4fb3ddaf622cb4
BLAKE2b-256 f0abc0e279ad689790c0b2994ed848f5ceb33dd9a2bbf2df7505e67cf696a898

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 590.4 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45d20908601158d06c65d9ed4a54585dc32bd49cadefc385374f77b9a4696368
MD5 5e4fe4e8585910b5f0abc7702b59431d
BLAKE2b-256 ec7e5c1742ec05537e516da7f4773e37f2b1fcfc16ff0c23b7db593af67d4c41

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 689.5 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f02b615ad69279e6ed61a7ba072494cd05cfddde210472956139d3361f8f20d1
MD5 bd0063c308d2ed610156986f11a1ea82
BLAKE2b-256 c1347f33bc7c30a80b663ea611d0f9cb449c182c11edd777876d0500ac80995a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 705.8 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 24a8af40f7fc41795892be937cf3480d5cd8ae1f62ef6a845e7258d05c9ab35c
MD5 70101b57444032fd0b18ba7abc6cfb7c
BLAKE2b-256 eb3d66f7f2366a64a952eb9f960433d957d9367f6c4baa2655b9b0fa60cb866b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 689.5 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4fbbe7129df9ecd818f259136f598241206a6ac10b09763eafcf6fd1ca0fe83f
MD5 d72b4a76e42a9ec9cc963662b59e31be
BLAKE2b-256 bd6565a3b9b5cbc61cc0951c29ac62655fd5d83498e3e90a866e889c9809c903

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 705.8 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 2997f73a0cb5abc3a31e8c740a908be426d71db38827486881728470cc60b2c5
MD5 e0896c9b50a788d183cafab04025d1b6
BLAKE2b-256 0931bbb2323a46838d7a0bf59712932565c8b128f784e9414ad27b1a3fb42d6b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 391.7 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66c5579effe2a846117b4f499ab6910d164804c8fe31846a80981992d1b78e6e
MD5 1c448c4638142924093989735553da70
BLAKE2b-256 cd08c1ef4f52db08f751d44200c3dd8c2fffc74dcdcd4b8727dcac23f9da2941

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 500.3 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 096b445dca7972161cdd1f856969414dde7cc9b09ff420005092d7b31139d41c
MD5 a37b26fc327a83a7ffb6e676bff84ec9
BLAKE2b-256 d7a1f83d31d3ab1fc7c096e6c9cc62475c3cd4a2a6e26f70dc6474442b9246bc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 887.0 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7891ecf01052b69c0e0cc94695a506dd1374636292eca26e061a0c1dc3165f02
MD5 22e569aed0600f69f3012d990734fb1f
BLAKE2b-256 c065fce9e03f486279951eced9fd6459f65f333063868fbb42847153df1b5050

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 398.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 41b28235f68475a865a94b4c0bee3259f525aac523d182432b68f5cafa35d9a1
MD5 57df2725ff1de4a1a326933fe913ddb1
BLAKE2b-256 db5fcd00d92fa8f7afc8b25bb83928ac63b9a5666f53db6112dbbef29038855e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 307.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3db9d3ea27f0926a137f0e0169f5b29dd49b88fb0171ed7dfce224b890a86f11
MD5 7fb42a287e916b933f92c9ceabaab75b
BLAKE2b-256 54f0138a9c6d2c2ffec71022a925ff23a614e8c9c44e937c6a5acb77c3b42cd7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-manylinux2014_s390x.whl
  • Upload date:
  • Size: 661.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4ab4513fbe47618dab0ffbdea7beb73695d730a424b8df719aee80e48f8d00ff
MD5 5a87b8da77cdb36e5a56f15462919cf3
BLAKE2b-256 6bbc436ebe54b6f18369d397a86df2ff561bad77fbc46c5b4c8824aef371c1b7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 670.3 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 92ee666f0cfa47e74e745e2bb794b43c6eeba2931c873a91b45b3439018cae77
MD5 423640bda818b3396920acef6402fb08
BLAKE2b-256 7be662d68358275131067ea40bba626d004d332b3cde14f55fab3311f15aa21f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 594.9 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 25edcf5a805479dd434155ea88e9e76e9b3677b670800d5e95e04556e1a4a0e0
MD5 7b363d9a47e2c513f0ffac31085938c8
BLAKE2b-256 f9b1dc16fee3233a3dbc16770d4d2c516570b050be4b19df1cf492b8ac2fbbf7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 691.1 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1b52b7139b98d559bbd977bd28b7e68a8d75dc2345122ca8fcf938e7ff72b295
MD5 9c90d8a08041ca79720cb8ae5fb86c12
BLAKE2b-256 20ab0bf5a98edfe1388192279a8878f5e7dc4cb752dcfa5ebea20fdff48a0233

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 706.7 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b4e16aacf5969f0a24dc530d0aa610df105d8fa7dd2aa282a7db98a8039c1719
MD5 00b6300d086f61f9571ff4915ba990a1
BLAKE2b-256 0e8a358cb694a39325dc3d9ff4cb422d449689e767b4a4473e040e0d16510a65

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 691.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a2122c78ffcae47f562450928be439a5b94ddb5b0e0d8e365ee1d08e8fe6874f
MD5 36ad9c6784f1f8ab66fd5fb4a61b68d5
BLAKE2b-256 2a075e151a27b70b59f67b9c1c501f143ca767d7e6ef7a934bb953b2d85eb40c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 706.7 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9d97ae27902ffc2efa87b272a79a7376ddea1639b969bf995f2b521c88c2d99e
MD5 e8e23b52a0f0f62a57a0b8047e1ce091
BLAKE2b-256 0e314cb6ef8fca99cdd7a1a3e039dfc4e9e8f805cac14d3d1a2853b10a7ade1a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 498.9 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a73a69108cc96fad0f57f374315107eef9e80f997da7483799a262616cc0ef31
MD5 aaeb41b83a59c6b27b091bb6a7ad7b4b
BLAKE2b-256 f01f9bbbb4e007b96065d9446e83fff7d819f35217917dd583f0e84f2f0363f3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 396.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f22193795ef02f9a6bf90e3898a81b927dfdb80c62c6cd3e59d87330a6d4bcf1
MD5 c21f0ef747aba9a2a8dc8a37a2e0e774
BLAKE2b-256 c4c539bf3c82ce9458e7ac8dc6d3189d8bc3b9faa0cdc57338dda3b3daf7865a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 306.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 eeb6e1c0d63dc4909dfb7daa105c035ff6713189b5ea1c312f7e760f986296c0
MD5 51130ff46be2c9d1c699b5c3ea3f5e18
BLAKE2b-256 46b9e7b3e811bfd28beac06dc84f87f66b6129af9eb9f844b0f28299e79e8afc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 657.3 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9931dad05f4d51cc4a610db3f33cc3631c4547412b4925380cca7f6f07041cb0
MD5 912f8f1eb6156f7709d61032ae024499
BLAKE2b-256 353134f9da7275d0ff7c99180762aaed7c9928f1642ae384292c3895bee4e073

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 667.3 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 67a0af6e486bc706f9f64cbd024a0d8d8b63726df95bb7c7a155791391f19567
MD5 c927c83147b87536b31b9233cac20a5e
BLAKE2b-256 444f7511fe17f60ca8e20434e899f675eec240d5fd4144a4178f5f5162262cd8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 592.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aae04e463205b363f95ca6971d7f9e3ed39f65a5ef7fee35b01775bba1dde374
MD5 c6908c9f6eabfad6103347a7b3f62e77
BLAKE2b-256 e5209711db5188ef73f562a745d42ed5ea05e054be56dcfa75f2f151c5c84f49

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 687.4 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 324f6b13274abdbed51d709d6a930cf1408c26a8013e279283f0131b5fc29ac0
MD5 3fc53c1e5d250366b239e981a949a7af
BLAKE2b-256 df49b1e5429c4b2399925182ffb543857963f6c913db24e831b0f92f75af7880

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 702.4 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bdb9942565fb10bca30e707b8c96e6e5544bd4c604394fc92596355c34fef258
MD5 097d62b39ad5041503de53dfebaa7da4
BLAKE2b-256 f61610f4c5b64393e4466c90020ad64fe15267435f0c15c648ddd6a77dd66d01

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 687.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d282448a4121a947daa540fdf0e9a8808adcf81168cfca0da9786768f6209fbb
MD5 19feb1a44662535aedcd120db95ebeca
BLAKE2b-256 f646fb3c14ba643b69abe3e6ea694dffb58305e7777ce813a7fedf4b7a2e1efc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 702.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 d25d6f7d94b17a962526c2261cc8fc2e292c5a071db810aeb9d48771ae9ec3e6
MD5 3c4b7bccf4e644b066a33d58e33b2960
BLAKE2b-256 2fa7b4802bcad4869fffdb02569e9c8e6ab373fa8f8ed4831eb69bb0dcf8834c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 497.2 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 076943f5b318483c263584cec59763d1aac70ea0dab5f5653fde495cd1e6395f
MD5 23fb167242c8c62bc5021835844280ab
BLAKE2b-256 e541ac2646924d3f1b91d040b3981587922f2d9ee97b24de86de9fc62ecafd37

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 396.0 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 2ba61d15d0ac83800f7a283b4c188ab54ac8595b1181714cc06b5f04ef33542a
MD5 12b323716ae59bc6c01fa8016d85ff35
BLAKE2b-256 0dfdbdd74ac0cd77c933b2868430aa09eaf4ec09a24a03424c70e429a0ce67fe

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 306.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 1cb927ea0904caad8f2923dfdfa0975c93fdc8528b882feda78cbfc373ffa229
MD5 aa0bfdcaf1b24bcfd5578d560971242c
BLAKE2b-256 df155dcb9bcb07c7d4bab3023e3247916380f592b885cf2f63adc22f9ffc60c5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 657.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 78b4e66dec10f9f3d7cc35e6924442b8c121bdaa8a0dbd70311561fd9ff87170
MD5 4773378ced71bbbaddf9b8db9539234c
BLAKE2b-256 66ed400479050ad093a98be7c6afe9fda738203345af9c215602ab463519f53c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 663.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 ed0387466970882468535a4a49bc14336783c55035a7e5d0edb36d05e253b8fe
MD5 ac5df7a98b87da9508ad9122700bfeed
BLAKE2b-256 0a24f188ca6e138e696524404e8b03727933d9dfdfbf1f098323fe081e978798

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 591.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3efb9f3c0d1ea0ec82d38075306f7e721dd88fb9ec0684dd350d73d83df6ba53
MD5 a06bdbc5b00cd70959ea5c75e786ec27
BLAKE2b-256 851a61916ca65c2811a5e0bf16ec741b341133a9856703b4b0ce1a6d2ef67389

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 689.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 9aa106d30859a57a1447346cdeddeb7015748281f43f2054e3276551406c39c5
MD5 927463901e272d5bce5892f9292df0df
BLAKE2b-256 f3f0668492d26fe5c3046fa4022a7143c5bc9087aff2f12c40438fa1bfa13f39

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 703.6 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6f18c4d9fc65caf6068e306acc40192ade6d9af88939eeda3617864b4d2e8abf
MD5 d7a584aa4ce2cd0e5df0b41943fc10e3
BLAKE2b-256 6b96d1ed45ec8a0611217c806fc3c6809c728ddd378c62f717c3d2e0b49795d3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 689.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c3679dad6789183219dea5ddb927bf62211dc1fdf5b6d17ad49971d2895f9518
MD5 357f02c81ec077dde7454566bbcd22af
BLAKE2b-256 ce82d6f5e2ff011b5c12b49953c150522cfbf38a668d1e03d8030039f2a1bd59

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 703.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 525634b52c0d9544b19105230fe0e09d2dce43901fa5f019a547d8667299f2b8
MD5 a92c7c2ec106230698e349a57e810ef4
BLAKE2b-256 d8f0af59e58a309ab5105dc6b9b5940ed8665503d30aabeab0c1911d6fc6d2ad

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 499.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 03d4fefc4a4ca0512040d0753d0be79d920d22e56cd2bc25f2ee6bdcd4176dc9
MD5 82dc1a28c25aa7ef380d125c8a696764
BLAKE2b-256 22b7c6ae2ef601b2fa1cde522702030923ed27236156fb36bc2178fed27f54cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 393.5 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 3d2d91358994e2b8379dc529399521c2a3ec727bfdcea7552b0877be1ec54117
MD5 a6389a71fec61709be0e87844a1578a0
BLAKE2b-256 950a5020c0bd1403976914b74a50641e8d16b202ff24583aa535eca1bf35ea6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 303.0 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 aa19c9c1b53f6019de4d2451a62b2cba1dee49e53f58905c84215e17a4ba3fed
MD5 cb629889b501c7054ddde720c5873e5f
BLAKE2b-256 bd73c6e72767e5f34e1ec71fdccb7a8c18601349852c84c92859e9dfd910840e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 653.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e61d8870134c3f419634387c9baa3997f4e5c4294fe620de39662562089212cf
MD5 f5794917e7e724a28d7491bb2d7e2ff5
BLAKE2b-256 15c833e6ca1e62f43528c18ddf27849dd5d126cc86e9d808a67cb1dd26071662

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 664.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3f07c9e13457620e32caa8192aa04e8bf8b99dab2d93a9679ef829c86e98fede
MD5 f3e228f9cab4f554e1a1a6637e6cdb99
BLAKE2b-256 4325e52945159a7a5bc01647401ec97c2696d6f793b97fc6c1f17b8e02c5896e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 589.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b08e8f3dbfd718832dfc77ea87484a8b8942c4f3fafacfd92b1204679d97d8fd
MD5 aca61250112c1ef566ff4b75788b1c97
BLAKE2b-256 a8febf018c0143bbce3cd45afe38d6dc0dfbc9aae7fdeddc11f6420142aac01d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 683.9 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ec74086dd1e00f8beeeda14aab80657c7dd84a8c4a7ab67bddce1f2ad41dbe1f
MD5 1e38987c02f1b1f1c17e63320ee58e22
BLAKE2b-256 02475eabae7143bda95078db3661ed83c04f1daf7e78f6af83f0e4db4bf56091

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 698.0 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c524cb3267a48ff826f54b70a396e0bc6eb5ba997f2900bc6eff242e43aaafb4
MD5 ab0a043e6d444707ca36fcc2be738ac3
BLAKE2b-256 2e239900870534846a0c59b251c96f7fd78b1a9f72d648a69ac63e3074dc8f24

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 683.9 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9059004a081a86f3fbdb44e3d36897264196883a339f740476d1869dd41e4068
MD5 4ce43d890d8e8ac6a57cff2f5722a7fa
BLAKE2b-256 f5b466fe140c8b11ad1a6b6c9d86782331c3c318d17ac5e88a102fe8c5985f37

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 697.9 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1d5a8f133fb85ea2ed882ab7053d69d0a60cc0c0a7e8bc30bb5e306066279508
MD5 a28d5ddcb609bcc5cbae808e74b5cd5a
BLAKE2b-256 764bd13bb7184c26b4333911c6a79d0b7848bb75e3579f7695a7fcdaedf30101

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.0-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.0-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 486.6 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.0-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d49956421daad639040e44dc12b301eb3f105f2ca4a5e9b32ed6c9650f02789a
MD5 5ac7c469dfb2254a4da1a3d927ba8b6c
BLAKE2b-256 e6a9dcdf613b700930f56681181a23aa16a8fa429204a8a5613a83df6ee94280

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page