Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Gitter chat Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are two aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. More details on these performance improvements in form of benchmarks can be found here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

scorer Benchmark

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

extractOne Benchmark

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.3.1.tar.gz (272.0 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.3.1-pp37-pypy37_pp73-win32.whl (301.3 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.3.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl (681.6 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (478.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.3.1-pp36-pypy36_pp73-win32.whl (301.3 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.3.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl (681.6 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (478.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.3.1-cp39-cp39-win_amd64.whl (402.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.3.1-cp39-cp39-win32.whl (312.3 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.3.1-cp39-cp39-manylinux2014_s390x.whl (675.2 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.1-cp39-cp39-manylinux2014_ppc64le.whl (681.2 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.1-cp39-cp39-manylinux2014_aarch64.whl (603.2 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.1-cp39-cp39-manylinux2010_x86_64.whl (698.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.1-cp39-cp39-manylinux2010_i686.whl (717.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.3.1-cp39-cp39-manylinux1_x86_64.whl (698.1 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.1-cp39-cp39-manylinux1_i686.whl (717.0 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.1-cp39-cp39-macosx_11_0_arm64.whl (397.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl (505.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.3.1-cp39-cp39-macosx_10_9_universal2.whl (898.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.3.1-cp38-cp38-win_amd64.whl (402.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.3.1-cp38-cp38-win32.whl (312.3 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.3.1-cp38-cp38-manylinux2014_s390x.whl (674.0 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.1-cp38-cp38-manylinux2014_ppc64le.whl (682.1 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.1-cp38-cp38-manylinux2014_aarch64.whl (604.3 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.1-cp38-cp38-manylinux2010_x86_64.whl (698.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.1-cp38-cp38-manylinux2010_i686.whl (718.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.3.1-cp38-cp38-manylinux1_x86_64.whl (698.5 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.1-cp38-cp38-manylinux1_i686.whl (718.8 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl (505.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.3.1-cp37-cp37m-win_amd64.whl (405.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.3.1-cp37-cp37m-win32.whl (316.0 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_s390x.whl (675.4 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_ppc64le.whl (684.4 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_aarch64.whl (608.7 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.1-cp37-cp37m-manylinux2010_x86_64.whl (703.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.1-cp37-cp37m-manylinux2010_i686.whl (720.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.3.1-cp37-cp37m-manylinux1_x86_64.whl (703.0 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.1-cp37-cp37m-manylinux1_i686.whl (720.8 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl (507.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.3.1-cp36-cp36m-win_amd64.whl (400.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.3.1-cp36-cp36m-win32.whl (310.5 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_s390x.whl (662.3 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_ppc64le.whl (670.7 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_aarch64.whl (594.1 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl (690.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.1-cp36-cp36m-manylinux2010_i686.whl (710.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.3.1-cp36-cp36m-manylinux1_x86_64.whl (690.2 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.1-cp36-cp36m-manylinux1_i686.whl (710.8 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.1-cp36-cp36m-macosx_10_9_x86_64.whl (501.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.3.1-cp35-cp35m-win_amd64.whl (397.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.3.1-cp35-cp35m-win32.whl (308.1 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_s390x.whl (660.7 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_ppc64le.whl (666.5 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_aarch64.whl (591.2 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.1-cp35-cp35m-manylinux2010_x86_64.whl (687.0 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.1-cp35-cp35m-manylinux2010_i686.whl (703.1 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.3.1-cp35-cp35m-manylinux1_x86_64.whl (687.0 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.1-cp35-cp35m-manylinux1_i686.whl (703.1 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.1-cp35-cp35m-macosx_10_9_x86_64.whl (489.9 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.3.1.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.3.1.tar.gz
  • Upload date:
  • Size: 272.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1.tar.gz
Algorithm Hash digest
SHA256 e33afe981fb471eacd3869d65db074aa5b0e7b0819c27d111e637b1582ece0fd
MD5 20c50ee522814ec1925184075c2f11a2
BLAKE2b-256 6fbdbe80519e5636ea6271856b195daf0b5e41d0f6cf18f7483408180118a79a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 301.3 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 ca74699ec71378c7625b9d1729cb8967445a0835262405938dc15b0625a3a239
MD5 4f222f0f027a3385f07e78353abdfa62
BLAKE2b-256 95579ffe13e6dbcbb0e84dba888956c535743651a2b05dd4b51e8b76c0623ecc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 681.6 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 6155a00fd0eeca41b08c3979ff494392487eed14ba4356faf4e3d3a60082c6ea
MD5 d33f5e081d473d1ffd5c019982fa984e
BLAKE2b-256 719279a2a482e88a04baf677ff5c5abffa06813d6f434f2a33acd150032aac0a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-pp37-pypy37_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 681.6 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 21e7f03d5f4c75adec3b72d434a3950c1a1e73ff4cde3c97692b1d77fab1b0b4
MD5 fed5bfd97b72483c51367a764682cf4c
BLAKE2b-256 11aa66562da5c8c3244766ca64cb27fb3e77d7a73eff4e4bc3bfe669810386cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 478.0 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a9f3bf54627d465071653adada20805cac9ec09a6ffb9fb9ba6528e16b45c1f
MD5 8b7b0f6f6fba8cc1c03a1f8a56cfaa89
BLAKE2b-256 50a2b9bbf3fdd0293c2e4ba4985135bcff387631833431cbecac6bf35a3adb36

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 301.3 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 49ffed902df38ba312f4943670026361fe7244aa99191637cc382e7ab112b65c
MD5 2ea36ee3ec3edab6200303f83028a92f
BLAKE2b-256 425ab5bbb69ead5b5392c51704f360f8f77fe730c17d1e1f73379ef47d0c1c90

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 681.6 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 61c3318ce3bafdb86644e8303cbc60e3ef32c3f8a39a2cf87b09d9a96d606cca
MD5 b78dc019a4bb51ae64659f157cee9c7a
BLAKE2b-256 0578a2e8f9bef18369a253dd81fcbec6f66928fe5ab23eb4af332039dd479395

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 681.6 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a6f227d1601d6f21ff7eff56a0021fc3f74cb1897c22d36e9f28b13d206400db
MD5 c012ae0a82e8d4bfd389ff50e209f4eb
BLAKE2b-256 4cf5beef5e3ea0d8a8ce7ef3ae129f75386720ba156833127faa33f0160e58cc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 478.0 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f74a50a34a878510d3f18077824ec1f5903d8fb034cb9bef60f4be1d43b14e8
MD5 5d8829d970d94a979dee8fa5027c5002
BLAKE2b-256 adf60f42367f43844dbeedc0921fc03c1ed7cfa69c310cb440e6078fd31d4df5

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 402.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4fecaa2f5a01a4c9ec3935b7764a766b04ab6583262d5734a15778063aca27d5
MD5 60041a5c960275ac49995aa37122eb07
BLAKE2b-256 b3a2b44d941f4c1e1f2e40c9c6caa083fd2397057db4d3decbbc43711e13a947

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 312.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 c9a80fa238cdf382c24ae1aee6020f205d7eb0cf784a9cafdc9f69871a653147
MD5 01b99d8c50555d1a033eed044614afc1
BLAKE2b-256 32ca82b99d4c713bde42661be9a2c60aa127d1a4b6e05dec206b08be0b85443a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-manylinux2014_s390x.whl
  • Upload date:
  • Size: 675.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 e019f7fdc4d4e2dcbbe431d8f7c046fb36869764c2705e07bd081966fcd1b4d5
MD5 e0e3be531a4ae6e3ae70c72938ef2d96
BLAKE2b-256 bb4aff6d5a2e84db9d3fd8ab69e0ff7fb8a0da38992346f949a1607d674fe904

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 681.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 107eb1eb2e2aaa301ec648369471b4901a3ccbe24c56d42390571a5da3c18bba
MD5 82692d15a5c249c3f5d4728f32aee83c
BLAKE2b-256 6a5f1406a633f42f27453a0e0195843a5a2545d12053739d616afd038da9dd88

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 603.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 746b76819d92119bea691afc98a3b835ddcbaea91f406fd3ca65b30b43f49e95
MD5 fe68bba7e1ee2e128e9c6c24e6960738
BLAKE2b-256 244281ddf2924805e91c6b66f304e59fbd0742bdc90a0ece26a5350318ad49d6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 698.1 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 0503516086917af0ab0ab0cc829d3e95c376b0997574b96b3bdd82b2831b6f71
MD5 ac52dba23fa42861b0faaf7b283e5246
BLAKE2b-256 f377be71a4f475c0ae381f72c4dd15b9aeb5edc2ca300d454f1a50dcee51be4b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 717.0 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c4bd5ae7919ce7ff0026a4dea2914de5d1ba6c87e8e112f05a4dfa3dce2ed28c
MD5 5c739dc449468d7b5a23b8ae5b4ac7df
BLAKE2b-256 a76c8476d63d46d81953468860c39dfe68121cac16a979e39c5295075b8b69b7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 698.1 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 45d18f3b1799a925aa065b15bcb28c1edbb1e9ec6927a10433a6a3c5dd77f0db
MD5 1d11c9bf70daf631afb245232dbf164b
BLAKE2b-256 17ac3ae4d1c9cefa29b2637c0638942f87958be95c735c9e7b28d1414924ac9e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 717.0 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 1d9c7057b132aa30ce2aaf229b113b11a5d7dd357deb140fcdb11e1a0ed99213
MD5 7cd3e1f9420bcd8d6a6bd84f516ffd9b
BLAKE2b-256 2fe5dc9d0d374ebb2ecdf18d5151be477c71752217b05536be4bde18f1596b9c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 397.7 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0a22e6de9f28c428dc495f4cdcbf876f8dd0df95f3e3d6fb28f9b721a1752e2c
MD5 d12e5fba0b8aa52a239b350f961e23ab
BLAKE2b-256 696ea1ac04982cf5eac8a95306dccf2dee1dc1fd4e723b09cb4dea9a3fa138f1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 505.8 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a1cd85c7aefd3d9bdb39c58e04edf09a33c602688ef4226da8d4bb2691d8c20b
MD5 393b38ca54449aec7c4bd7f209e93f8f
BLAKE2b-256 d6bf0b51e79a2d09cf9a7676036342b0d8d21c4cfbd00487045b54d07ebfb7bd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 898.8 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 327b102e7b7c168140f14417111413d72f0b16306e087aa7c5075025210dd08d
MD5 26919818e1ab60db6446a71e443f94e1
BLAKE2b-256 c8a2468778735803d48697f421c5aabf04fd6dd97c6ef981e38cf98623014cc6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 402.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ac6f381a69c96df06192025c7661e5d2d8204c16ef9e8984ef86409214e0e0e0
MD5 0313f33dc97b4ee780e1d1198cf66327
BLAKE2b-256 5e0327785d249c97b48a4c7f8a861b8b77710a728c6ee6c2d6e9da70a5ca9036

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 312.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e44acf9ff964841f1f8046b5d1af0c3b52e5c35f0f9eef1e43f0661dfb886089
MD5 305b7be79166af0d6ba32fcc2e61e35b
BLAKE2b-256 7c2513eaa83d780189a79db291dd4b04b3973b361acb32dcc36d603229d52059

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-manylinux2014_s390x.whl
  • Upload date:
  • Size: 674.0 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 80a2ef26a5cbcf2fff68f3d242c891f548c5562c796024c0af9c35a99061e1eb
MD5 aea609af28a8b2fa2f16f3d6ed5c3906
BLAKE2b-256 91cd3c7408f1e70ad53c72727f09d339bd9cfecc61a044ef53fc34b75bd8d759

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 682.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 854776d2e12196210cd6c4050005cd9e5d604588f021da52a18b8ecf5742b2f9
MD5 4eea1a9dbe9f0653d971171ada12b95f
BLAKE2b-256 a7b99931a3684db5802a96fa03d07341140c59b657d2d540196f76ae1ab19bd9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 604.3 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9f448c07de76cb866d57a68c19be095e1b262fac8125ff40b1532ad88a246517
MD5 6269e5365a68e3d062b160f464a738fa
BLAKE2b-256 8a14fb5423d5dc6cfeaf461d89e51c3db40f32afa5b2c1fd6db58dee6c50e018

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 698.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d6e2d3b01e951c02b80156c75adfd44a7f16e7c0fb859309f6b478878bb48bdd
MD5 a5c0f9f9b174f06b5f71b285d58dddfa
BLAKE2b-256 decb03f3a06fc5b8d3d2a19011535eafffac354c78137b4e2f227ec6386093e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 718.8 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 60b4f28faf5a4f8ead7f5db6afb17ef5e0cf369f3f339de590a85791cc3ff4ef
MD5 b73bfab6f374b1d2191deac9c9c460d9
BLAKE2b-256 e2ce8bdcc878ccd6324f379538cd4e2b5a57624a26c5373187984742b69bf662

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 698.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 064038bd1365a4aad1dea49b76339ee4133b8e7e5fdd3177f061c6dc95a7ee0e
MD5 070f9501e8f484326fcd29fb247f8922
BLAKE2b-256 f559a717eba40f04f8e706f9952f0294db8cec8da6e864f613af0c0feaba9383

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 718.8 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 58ea233603ac77b6c750edfcb025fa5ac892b0bb4c561a8c9dd23a15dfeee970
MD5 73b9c18c9a6d44dadbf86dbba0f49bac
BLAKE2b-256 eb9c8f1c9124d5762af12b2840df7c91d2570b393b9476ae7a61f3ac925da589

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 505.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2df8831aa5a39f4540eb39b3cc52e96317f0569ea602c342dc75247871f12637
MD5 5ef7df54d909b9f6d48137d7fa21534c
BLAKE2b-256 d10fa20a1444c854549d99c5623f9e8a7357324ed53295b85f9f2accf1843935

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 405.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2bd4f5f3c000daf71f598c90ac6d520307336c4739b6ca4af06dae130d1a051a
MD5 6a5fc44e3d34d612c8ac989ded882fb4
BLAKE2b-256 67da36ed1a947b20c24b30546d6646830f82c65eeee7552570459725e486a610

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 316.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 b786569b2201df5f76da43c7c79690513289918c37d571eb0d0241dc3186d07d
MD5 0c914af2705b5c140524e73a03c5d827
BLAKE2b-256 74f4df5272ce7272b74bd6be28885c6c2580805612b1a2089afeb13d246e9eae

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 675.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bd5c03f9575e4bc748d44c7538c472ffec9acf5002f3bb8c8a67ea476f85c844
MD5 ad9111b11013e9c4c8c515646dca16fc
BLAKE2b-256 bd346d1da0f292f6393d037aa462f70cb5c430c7e95a161e151545ffe4a643cd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 684.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1ecac26ce5bde05ad024296fe8be76d8f22b2908e1bff03197d35631339e2d83
MD5 66eaaecc62bd4a52cfebbd42cad9c350
BLAKE2b-256 42d5f3046a8434fb86d88a6770747717b78dc7b4b027bb90ccf204e8588473b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 608.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b60e0f4d1eed82daa08cfc077e166088b65a9f885e3643922088b7cd93013545
MD5 372d6819cf05a79a20fe5f2d88eab660
BLAKE2b-256 ee0aa008d4353544104170f78d18ae00a4649046372882db9c60f863ff637dca

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 703.0 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e289c03e3beae3a644922b5b67e687627af65acdbaa9347cac4173884899ef17
MD5 3e9af439b06d26d4da31c1169c95b9e7
BLAKE2b-256 e33cd31a84b09c774769de8ab0f262c12aca2ac93dc06342712485ab4f75f9eb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 720.8 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8b903dafe751135fa3fbf8adcc230ed30b8197ceed571e4b30ff7a9dde629c9f
MD5 aea8f9990ecaefc8e820c9c3fbf6f2a1
BLAKE2b-256 3243a5947f9bd2153aaa109dd1a72b448db14f1c10586df711ea43025defa742

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 703.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 245c2338bda38f0bc4c9536675e51f863a1997e8e649b26c953081b7a6abb159
MD5 5e9d244bbfcce9b6f9b68f50a9e2fa41
BLAKE2b-256 17e981456f6e699f9033169dd2dde72726caba39156d1105f704d15280e27225

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 720.8 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 908bb7eff9751cd714d21d7c483993633c0671c9c5669ffa52cf91d93e034612
MD5 ef5c1db58bcde395b9918d9a691541d6
BLAKE2b-256 fe79d8536c7b87df0b232d49494829dbd71c0559c42007662334391e3b1ee505

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 507.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b41dec4f06e51b14c80b6ce1fdafe00c23a40110c20e0783a8e4fd2a450dc293
MD5 27dd3cf89b010e5efb9c295292cbe8a0
BLAKE2b-256 e745a570763b2a7132ff0150ec9b3dbf9bbecd63a237d764b4c020e596172852

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 400.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 15f946b3b82e1dd10f6a7543c7f2cd07cd1617e71d0feb3789b874515c6b225e
MD5 507fa08a60907dc8eec85cdb1eb9befa
BLAKE2b-256 ab512b6ce1e72b27a99b606d7e16774fb5815592ebec78147118d267363abfbd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 310.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 07659525840750be3861ca65edd37a37226fccba9dac706f62d4dbec91985587
MD5 511020a983a26c3eef7ec8a933a0429b
BLAKE2b-256 7772ef5231528b68b1f7b3ef3688e7979f0d397cdbe7f54e73ddf610b290334b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 662.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5523ad0ae8b548140eaf566e267452c0a2ba09837e76c2fa27cfea0c226e7ca8
MD5 774202778bfa8e856a54964e3f2a239d
BLAKE2b-256 a819cbe64950f1d422e41f961c8324329446a72eece7c67172a8bb468da3c2f6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 670.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 5fbc1c98a594f83327c7debae7f0432559e96eca6ab6b70d09d64ddce99935a2
MD5 5cd49c7e69dd5a52b0cb6844de3953a8
BLAKE2b-256 c3c231abcc5c2c7b026579131dfe60bebb1e71a0bf057c3b8823fd09b68763ac

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 594.1 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 efd5c1cb4bdba2db017ae231ea56c6e79ea01802f81dc2913d58695583881024
MD5 1f975f8f3e5e34571e2404ef03f4f634
BLAKE2b-256 4856a6fae4298c8100519abbea6776604ce1e81b0f1fb8765c5bbdec6d7f7e72

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 690.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d00f4e22328e26e5719e9c90b17d0b352efa91c12dd5e1932182b37e8674bb03
MD5 5e4f2a0afeafe4f29ae1a09861eeb71e
BLAKE2b-256 8accbcb435b1a3fa5de4f495f350e2ad8df5d418963aeff2a26f5fb1abde2385

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 710.8 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 708e95f979821b9d2984edb7857f17607fe067e29fd86c0cba0b1b82eae63232
MD5 77636b6e9ead4e4b533e5f9eb6b72c4a
BLAKE2b-256 5f9bb16a5b797db9e7a71def7c5c0b2a81b705e6a28b8cc50c4901c04ec83668

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 690.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 894567992f9afc3d1b4ad3529101cc08f7d752916c43327ec51bbd2b42f8670f
MD5 4ca093483b12a694d29f8d2ed6cb4bb8
BLAKE2b-256 b9fd803b6f7046346d1706cacda050b6b22552984814a5aa0174c0d7cfb5bd46

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 710.8 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 9f60687055fde67db56b9d898044b2341be3335fb1fca4941a5c889aca01f6e0
MD5 8e315dd27c6f5f21d201312fcdc5d459
BLAKE2b-256 c247649e0908a323ff2bdfa49568efc62fd8a23118543b5ee21e51d63875ebe8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d16bca08724e056d5b51a2fb50e756ff0b04f8471fa8d3fa78b943ac405e3ca
MD5 c4e08ba5a02040a6a2f5d906e4281fef
BLAKE2b-256 85b1737643c182d812102677f7cd9ada2b39ae5a556b18db8962b80187cd2269

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 397.6 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 0dc5b9a7dc8b7d44bb3a54eff8e4625687be06c3efd575f828d38b23250bc5cd
MD5 758dacd50fdadc862a3fcee96cd9002d
BLAKE2b-256 7d59e1dc223e1275dfb99259ee5d5478264dbbb62e0c57780cd559753b544dd7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 308.1 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 e2530ff4ce1294fecc4906b5f094ca246d029811324e0baaeddafe55c04335ff
MD5 0cfcc0e6d3292f0fbe7135cb4d76d55c
BLAKE2b-256 7c66c572e31b2bbc5072e46a7620240a09cc33172a0ea5be3871885ac7df1ec0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 660.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 bcb40b86c0701226d89393146cb01a27afda94e063b3b3d7d4a8b06f184af98d
MD5 51d7066dbd3bebaabded3f0a012fd46c
BLAKE2b-256 1258d7f1884d0eddb0f8c0567698fccf5ac0fee6295796dfcee92b70a8630fda

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 666.5 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 15a7b6de637c77b4c98787aa2de8385f06a4b7481da555a4dce6e35f967fbae5
MD5 4796e87c387d8ae297a95bc8941ed544
BLAKE2b-256 a8e9ec0be5f88f21b956b13cca35cee898218e6118bea39c5c04d6b966bfc8a2

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 591.2 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee01fbe185518b672d09437be81b7ac3b8919fff5aa0e71044960d216606be64
MD5 cd1e5fa9cf385069bb5f4e61d3b7e73c
BLAKE2b-256 e6fe494e4dec5bb15e2c49ec80bfae3fc67dfe31900e006da8c11c6a9d35430f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 687.0 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a09364794ba6c326b908443220538c922a217f3ea5f96b816c7852a56862e690
MD5 dbe2fb48070f4bfb0d7347d2009c433c
BLAKE2b-256 4fe420bc303af6c3a92a40bc00fe5a5ffb1d40078ec821479bb098e3738d59fd

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 703.1 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c70086c4f4f14c93a7722001250a3f951892a1cf307f267124b75b1ad38c478b
MD5 74a12d742929be60bc93a177438a68eb
BLAKE2b-256 edaa56f8312fc53c71910e579c8dc0ec6c455d1ba5517451b046cf48d28c56c7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 687.0 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 56521757341d71cfc93e8f0d722e6331e56ed9cd3df2166cb4fd9670f15f5f26
MD5 470942792cafcb8c3a1d940a0f207481
BLAKE2b-256 98f2776818f8547704d29a4baa06c98d18a76a99d7868cc4ab7abbffe0b58389

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 703.1 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 382f8eff3c5e220e8747b150143c688a9e0f284a1ad1ab600e2333d811c35a42
MD5 743f72e02beaec99787580aa67ff330b
BLAKE2b-256 e500c96374465fe54dcd3732fb02dfe0dee9b49125c602222f50311cb984e141

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.1-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.1-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 489.9 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.1-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d156a645ba91e1d600ad76acd347418ec689c274e3458631e64127d1427c4a66
MD5 8f575e692711da825cf7829c54ce7568
BLAKE2b-256 495087661d1ba26cd368daea2c9e0ba00aa7844af03e3b298f90185de510c033

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page