Skip to main content

rapid fuzzy string matching

Project description

RapidFuzz

Rapid fuzzy string matching in Python and C++ using the Levenshtein Distance

Continous Integration PyPI package version Conda Version Python versions
Gitter chat Documentation GitHub license

DescriptionInstallationUsageLicense


Description

RapidFuzz is a fast string matching library for Python and C++, which is using the string similarity calculations from FuzzyWuzzy. However there are two aspects that set RapidFuzz apart from FuzzyWuzzy:

  1. It is MIT licensed so it can be used whichever License you might want to choose for your project, while you're forced to adopt the GPL license when using FuzzyWuzzy
  2. It is mostly written in C++ and on top of this comes with a lot of Algorithmic improvements to make string matching even faster, while still providing the same results. More details on these performance improvements in form of benchmarks can be found here

Requirements

Installation

There are several ways to install RapidFuzz, the recommended methods are to either use pip(the Python package manager) or conda (an open-source, cross-platform, package manager)

with pip

RapidFuzz can be installed with pip the following way:

pip install rapidfuzz

There are pre-built binaries (wheels) of RapidFuzz for MacOS (10.9 and later), Linux x86_64 and Windows. Wheels for armv6l (Raspberry Pi Zero) and armv7l (Raspberry Pi) are available on piwheels.

:heavy_multiplication_x:   failure "ImportError: DLL load failed"

If you run into this error on Windows the reason is most likely, that the Visual C++ 2019 redistributable is not installed, which is required to find C++ Libraries (The C++ 2019 version includes the 2015, 2017 and 2019 version).

with conda

RapidFuzz can be installed with conda:

conda install -c conda-forge rapidfuzz

from git

RapidFuzz can be installed directly from the source distribution by cloning the repository. This requires a C++14 capable compiler.

git clone https://github.com/maxbachmann/rapidfuzz.git
cd rapidfuzz
pip install .

Usage

Some simple functions are shown below. A complete documentation of all functions can be found here.

Scorers

Scorers in RapidFuzz can be found in the modules fuzz and string_metric.

Simple Ratio

> fuzz.ratio("this is a test", "this is a test!")
96.55171966552734

Partial Ratio

> fuzz.partial_ratio("this is a test", "this is a test!")
100.0

Token Sort Ratio

> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
90.90908813476562
> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100.0

Token Set Ratio

> fuzz.token_sort_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
83.8709716796875
> fuzz.token_set_ratio("fuzzy was a bear", "fuzzy fuzzy was a bear")
100.0

Process

The process module makes it compare strings to lists of strings. This is generally more performant than using the scorers directly from Python. Here are some examples on the usage of processors in RapidFuzz:

> from rapidfuzz import process, fuzz
> choices = ["Atlanta Falcons", "New York Jets", "New York Giants", "Dallas Cowboys"]
> process.extract("new york jets", choices, scorer=fuzz.WRatio, limit=2)
[('New York Jets', 100, 1), ('New York Giants', 78.57142639160156, 2)]
> process.extractOne("cowboys", choices, scorer=fuzz.WRatio)
("Dallas Cowboys", 90, 3)

The full documentation of processors can be found here

Benchmark

The following benchmark gives a quick performance comparision between RapidFuzz and FuzzyWuzzy. More detailed benchmarks for the string metrics can be found in the documentation. For this simple comparision I generated a list of 10.000 strings with length 10, that is compared to a sample of 100 elements from this list:

words = [
  ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(10))
  for _ in range(10_000)
]
samples = words[::len(words) // 100]

The first benchmark compares the performance of the scorers in FuzzyWuzzy and RapidFuzz when they are used directly from Python in the following way:

for sample in samples:
  for word in words:
    scorer(sample, word)

The following graph shows how many elements are processed per second with each of the scorers. There are big performance differences between the different scorers. However each of the scorers is faster in RapidFuzz

scorer Benchmark

The second benchmark compares the performance when the scorers are used in combination with extractOne in the following way:

for sample in samples:
  extractOne(sample, word, scorer=scorer)

The following graph shows how many elements are processed per second with each of the scorers. In RapidFuzz the usage of scorers through processors like extractOne is a lot faster than directly using it. Thats why they should be used whenever possible.

extractOne Benchmark

License

RapidFuzz is licensed under the MIT license since I believe that everyone should be able to use it without being forced to adopt the GPL license. Thats why the library is based on an older version of fuzzywuzzy that was MIT licensed as well. This old version of fuzzywuzzy can be found here.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rapidfuzz-1.3.2.tar.gz (272.0 kB view details)

Uploaded Source

Built Distributions

rapidfuzz-1.3.2-pp37-pypy37_pp73-win32.whl (301.3 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.3.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl (681.6 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (478.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.3.2-pp36-pypy36_pp73-win32.whl (301.3 kB view details)

Uploaded PyPy Windows x86

rapidfuzz-1.3.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl (681.6 kB view details)

Uploaded PyPy manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl (478.0 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

rapidfuzz-1.3.2-cp39-cp39-win_amd64.whl (402.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

rapidfuzz-1.3.2-cp39-cp39-win32.whl (312.3 kB view details)

Uploaded CPython 3.9 Windows x86

rapidfuzz-1.3.2-cp39-cp39-manylinux2014_s390x.whl (675.2 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.2-cp39-cp39-manylinux2014_ppc64le.whl (681.2 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.2-cp39-cp39-manylinux2014_aarch64.whl (603.2 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.2-cp39-cp39-manylinux2010_x86_64.whl (698.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.2-cp39-cp39-manylinux2010_i686.whl (717.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

rapidfuzz-1.3.2-cp39-cp39-manylinux1_x86_64.whl (698.1 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.2-cp39-cp39-manylinux1_i686.whl (717.0 kB view details)

Uploaded CPython 3.9

rapidfuzz-1.3.2-cp39-cp39-macosx_11_0_arm64.whl (397.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

rapidfuzz-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl (505.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

rapidfuzz-1.3.2-cp39-cp39-macosx_10_9_universal2.whl (898.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

rapidfuzz-1.3.2-cp38-cp38-win_amd64.whl (402.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

rapidfuzz-1.3.2-cp38-cp38-win32.whl (312.3 kB view details)

Uploaded CPython 3.8 Windows x86

rapidfuzz-1.3.2-cp38-cp38-manylinux2014_s390x.whl (674.0 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.2-cp38-cp38-manylinux2014_ppc64le.whl (682.1 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.2-cp38-cp38-manylinux2014_aarch64.whl (604.3 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.2-cp38-cp38-manylinux2010_x86_64.whl (698.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.2-cp38-cp38-manylinux2010_i686.whl (718.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

rapidfuzz-1.3.2-cp38-cp38-manylinux1_x86_64.whl (698.5 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.2-cp38-cp38-manylinux1_i686.whl (718.8 kB view details)

Uploaded CPython 3.8

rapidfuzz-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl (505.6 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

rapidfuzz-1.3.2-cp37-cp37m-win_amd64.whl (405.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

rapidfuzz-1.3.2-cp37-cp37m-win32.whl (316.0 kB view details)

Uploaded CPython 3.7m Windows x86

rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_s390x.whl (675.4 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_ppc64le.whl (684.4 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_aarch64.whl (608.7 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.2-cp37-cp37m-manylinux2010_x86_64.whl (703.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.2-cp37-cp37m-manylinux2010_i686.whl (720.8 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686

rapidfuzz-1.3.2-cp37-cp37m-manylinux1_x86_64.whl (703.0 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.2-cp37-cp37m-manylinux1_i686.whl (720.8 kB view details)

Uploaded CPython 3.7m

rapidfuzz-1.3.2-cp37-cp37m-macosx_10_9_x86_64.whl (507.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

rapidfuzz-1.3.2-cp36-cp36m-win_amd64.whl (400.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

rapidfuzz-1.3.2-cp36-cp36m-win32.whl (310.5 kB view details)

Uploaded CPython 3.6m Windows x86

rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_s390x.whl (662.3 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_ppc64le.whl (670.7 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_aarch64.whl (594.1 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.2-cp36-cp36m-manylinux2010_x86_64.whl (690.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.2-cp36-cp36m-manylinux2010_i686.whl (710.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686

rapidfuzz-1.3.2-cp36-cp36m-manylinux1_x86_64.whl (690.2 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.2-cp36-cp36m-manylinux1_i686.whl (710.8 kB view details)

Uploaded CPython 3.6m

rapidfuzz-1.3.2-cp36-cp36m-macosx_10_9_x86_64.whl (501.3 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

rapidfuzz-1.3.2-cp35-cp35m-win_amd64.whl (397.6 kB view details)

Uploaded CPython 3.5m Windows x86-64

rapidfuzz-1.3.2-cp35-cp35m-win32.whl (308.1 kB view details)

Uploaded CPython 3.5m Windows x86

rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_s390x.whl (660.7 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_ppc64le.whl (666.5 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_aarch64.whl (591.3 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.2-cp35-cp35m-manylinux2010_x86_64.whl (687.0 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

rapidfuzz-1.3.2-cp35-cp35m-manylinux2010_i686.whl (703.1 kB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ i686

rapidfuzz-1.3.2-cp35-cp35m-manylinux1_x86_64.whl (687.0 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.2-cp35-cp35m-manylinux1_i686.whl (703.1 kB view details)

Uploaded CPython 3.5m

rapidfuzz-1.3.2-cp35-cp35m-macosx_10_9_x86_64.whl (489.9 kB view details)

Uploaded CPython 3.5m macOS 10.9+ x86-64

File details

Details for the file rapidfuzz-1.3.2.tar.gz.

File metadata

  • Download URL: rapidfuzz-1.3.2.tar.gz
  • Upload date:
  • Size: 272.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2.tar.gz
Algorithm Hash digest
SHA256 4a1e04002ad7bce9605248625e143ce3786195d4c2dd249ae5af0e3ee52b2de3
MD5 56a9eb4230ce6505607e5a77ee8e2323
BLAKE2b-256 b5ec4148c8a2224cb735767d9f06fe6d0f9ce78e7d58eb97e6800ddd8a6ad4c9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-pp37-pypy37_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-pp37-pypy37_pp73-win32.whl
  • Upload date:
  • Size: 301.3 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-pp37-pypy37_pp73-win32.whl
Algorithm Hash digest
SHA256 441186ec66acd82392c8ddba2616f265955bcb02aff80859bb028c80382c4f8a
MD5 4f21324cd3b77be56c35675a6a553afd
BLAKE2b-256 e3681666b6881e0c7c4d6f33b8da394b673bf61dce7b3ea24e5fc7b615c8efbb

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 681.6 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-pp37-pypy37_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d8166ef2a326f468d3bc2146d6ade1e64f1cd0e4173659c63ecd1e27c3d84f9b
MD5 051b8b0d61ceccd7dc0d13d5931da55f
BLAKE2b-256 66a3034d768253b0660c48bff30e26b6c39bc2498b3a12135a0b673ac97202ef

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-pp37-pypy37_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-pp37-pypy37_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 681.6 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-pp37-pypy37_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1be9a5c5a567f8f216f5dcf19ef323b4e033d5c66c6a351c360d9acd7753e0ca
MD5 eb5c974b080ecbc568fc69651a22ebec
BLAKE2b-256 df3965076a6e82fd147d4da4e53782b29a04c7155861dcd3c67849744eb1831a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 478.0 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8b851b4bb632eab7116ed04486ca27d62225b1ff04ac0f6dbe813e0c6f741d78
MD5 a85d0418eb413378906e3ce746a3350a
BLAKE2b-256 0a7eff6c1eefa700a529b4dd537ed99fbf35a1486b8185dc4f59c50230001c98

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-pp36-pypy36_pp73-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-pp36-pypy36_pp73-win32.whl
  • Upload date:
  • Size: 301.3 kB
  • Tags: PyPy, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-pp36-pypy36_pp73-win32.whl
Algorithm Hash digest
SHA256 77a4b18b2f4dce520578b97a7cfd020717baee92ff144a27cd6260d59751054e
MD5 499d60a41de2c24c139684124a664a60
BLAKE2b-256 18cd331eaf30288fb2596f700a88a4fe888bedd0fb131b742b40231d2de56711

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 681.6 kB
  • Tags: PyPy, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-pp36-pypy36_pp73-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d3ee78b3375340dd6cf97d885b4137811ec006af9f194068475558a2f3135ff0
MD5 8c5783c0ae4216491688459f1c646d89
BLAKE2b-256 5c0188f588f187de5ae289674b7b1faa1223c5f2693ae3a73c9a284a941e5e45

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-pp36-pypy36_pp73-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-pp36-pypy36_pp73-manylinux1_x86_64.whl
  • Upload date:
  • Size: 681.6 kB
  • Tags: PyPy
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-pp36-pypy36_pp73-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4c14bf650041581fe77b9c34e924f8c16a1bc2b70f28a50234821054945961bd
MD5 ce662129260a3cd5102fcf9898b5d87a
BLAKE2b-256 16d0373e717127776d9e8f4ce021021669b773e7b9aa6d5387d7649f0fec5fcc

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 478.0 kB
  • Tags: PyPy, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-pp36-pypy36_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d120544f9a01a0cb04ff10c0a482ad98e15f26dfdfab8ed17f1ae2389dcd64e0
MD5 d7b8f13c333f4c392d6b5b2d222006ad
BLAKE2b-256 c7b7d9a106d33c8e60b8614a636529c0d04f6894a25cada724329640e4bbee92

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 402.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6df4a5199463d41ec31d084811d97476bf5a5c8a1e9ac1669ed247446ad19bcc
MD5 fbdd61b2918d4dd476f4c434ba827ed6
BLAKE2b-256 69c83dfd46754a2bbe55e39d8e3ff4e8c99522a7f029d45cf8b94c524ea91214

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 312.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 2f572087ad20f555236e4bd61fa6bd4dcfc7e26c18b2cfda1f38b0ad0f4a0eb2
MD5 a276acba8316fec1ac7e7917243a04ab
BLAKE2b-256 5a5924780b713122eb91b2f6801472b9fa2085d145b0d29ca7bba5be095b7d4d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-manylinux2014_s390x.whl
  • Upload date:
  • Size: 675.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6e81690aa132f2c2c408afc356693483f33f3372952fd875aa5f6317bd3a226f
MD5 0734cd30851ebe7d2374babbc1aad431
BLAKE2b-256 48ffac2de4417ea72f3349909469ef137d8c1f9018d586896aeb6ed3daf833d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 681.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 7629c0de6cdd8708d76b61886903828d31cfd9cbfe3c1867b08f78b546ea1771
MD5 4c2a04ba2ed491cb226d4a75563be46a
BLAKE2b-256 7a74ae221b6f047fc0535ac9bbc250bffcc21b2d77742eadfdee3927b8c3f110

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 603.2 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 92c07cd4c5a3cee932b1b1b2a3d5af696f13c7ece051756646d83dd0a48c21aa
MD5 d2d50f03f337350847369c88bdd08bc7
BLAKE2b-256 dc872f20995180227006748ef56556aac78ea02e070de773a92049e8c7efefde

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 698.1 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 127c8c7501349cd3ad39dcafd42e07b38ecac6b7bf2110f5716d8f4d6f6ad003
MD5 146054fa8049a4a00607ae986812d316
BLAKE2b-256 b939e2678e3cf7c9b72ce01a4cdde63dcde16a824a525e9d69c2243992d7d434

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-manylinux2010_i686.whl
  • Upload date:
  • Size: 717.0 kB
  • Tags: CPython 3.9, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 85df68b659ea07bf9a4e7680e06558ffbfa7780d9a72cfbedd3e02c14f9eba50
MD5 dcd490d7c1a89fb4971d1a0637a7da0c
BLAKE2b-256 5851c328328dd60743d13ce1eadeff503b0a715422b2ba06c7e27bc2f2900a24

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-manylinux1_x86_64.whl
  • Upload date:
  • Size: 698.1 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c6a56f7a5c87c13d0fb866b8594d5546276577f904b9f1d96d4bf30d082c2588
MD5 310adcc614e975dec57c95b9fe795e54
BLAKE2b-256 fe85c4442c9d4fd3f1400e4e35630b394c2502dd996e68c3b06973ab3c169e8b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-manylinux1_i686.whl
  • Upload date:
  • Size: 717.0 kB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-manylinux1_i686.whl
Algorithm Hash digest
SHA256 83671f0c62e81b468865cc922b36b6e4f05b73b56d5dc428bb0cdcbcc51a2100
MD5 93efc06f3355e9089d02628637228560
BLAKE2b-256 3029d5ca2cffcd30a455d0d344a61e030dd3350ce45c881ac2a6a3c8af7b0f13

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 397.7 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 05fabe4500d73558aaf10fe786de71be029033bd7970081d74586dd31a823e59
MD5 eeb1d24598a460be64a321822310dc07
BLAKE2b-256 8f68564c900839f5793c815a4a7c9283c53e3c63eb5396f2f49ccaefac1989e7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 505.8 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f2ecf1ab26dccc64ea562327fd8fd578c6ca51336736323e43bcfd0fdea776a9
MD5 62986138607fe514b176284335912da4
BLAKE2b-256 5dfd7b66b90c41dc0d021363837326795a691cc8d4ff0f0dc4a7946cac88eaff

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp39-cp39-macosx_10_9_universal2.whl
  • Upload date:
  • Size: 898.8 kB
  • Tags: CPython 3.9, macOS 10.9+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f23e63dc300b5b47802ac924ab6661d7cdfd514c96b4fe24a387cc20386f0374
MD5 740fce239f1134c2c8504a28f81b1739
BLAKE2b-256 f8bbed3e075e84ce7837182eef669275b5bdda86340f2d9e27132f4a0f73260a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 402.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c4faf9fc2f501582f83cdd551b1cee44a52323da7a30a0a9fca1c5c7e9d6ca0f
MD5 6e08bfd450467ceb126757849df3a334
BLAKE2b-256 e711e1ac5f0e6121fc78c1a84b48da77159620725d7be8e8d258a5d3a6fea263

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 312.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ca04705d1b49b6eadc5dd3dcfc347b85a7ad1efeb09a4ad5c31ff9b359736149
MD5 86d23f33c4a4110c972976d1a63ae424
BLAKE2b-256 7e9da5868a3e5dab5866ee586a93140cde79abc33d5f0923955b0ee64b1d7477

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-manylinux2014_s390x.whl
  • Upload date:
  • Size: 674.0 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7e921621fa3b0f544c79bd571d96782b874a02a5c6ebf9787644a8f081968da6
MD5 680e91144b3c792dae1a44c75c3491e8
BLAKE2b-256 3fdf9f1f94328dafcb878844834ce34d03cb0323f5c455a4a60a9ba68f020dd7

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 682.1 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2616b29174806ac0dc2d1bdfaa5fdc03d5b6fb6db7cb398d26b60441bbeec86d
MD5 6ba9f88556b15caaaa3e1592fa57aca9
BLAKE2b-256 c6be8bca743f86e47897c4d2d996da854fe26b194008aefc8de690d00911785b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 604.3 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 918f3a992c1de46d6468fa46d6fbf1ff893f928eea735423ee74e95a6e24e27e
MD5 00745d396807e44d5b3e95c4a2551b04
BLAKE2b-256 7c2379588d541da03a218e606e0b29a3af7c4f7aa0f58bf983ad86350bd894e3

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 698.5 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 160db748748da16c7c6f1c8c1335daec0e3a41236e88ef03880e1eeca167882d
MD5 1a50041845ce8756b20cef75ff4eb77d
BLAKE2b-256 fd78767a959eb22d4460a0d894b1de50dc0bab158a8f4bfc6a0eb2c812055692

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-manylinux2010_i686.whl
  • Upload date:
  • Size: 718.8 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f82d607d32324657b3c2fc539caec35ff68d11462bc7473e8ac1a8eb15dbdf05
MD5 3c3ec9ef526741b620fea425d7e6df84
BLAKE2b-256 2efb2b6d0346b1892dcdd2d1e339153e71d37eed653989129214f01fcf3ca954

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 698.5 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 cce9c6bc7be5117d584ba2ed83e9e48dacfe4dabc2958655bfdffe81b3d43024
MD5 e5693f0d4e9befbe0fa0fa2e93409929
BLAKE2b-256 69b99d9efc679a4d3b605966543ab14ea964f0ce7ee619a86be4b325ea14021d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-manylinux1_i686.whl
  • Upload date:
  • Size: 718.8 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-manylinux1_i686.whl
Algorithm Hash digest
SHA256 e23c074218c37ede77a3455af88772b4ee7c9023db63bd6ce01f9c94561b9bd9
MD5 e4c83f30fc5839a05953462780e21caf
BLAKE2b-256 6fbc8427190c87f1ca6d4412acb6a4a8bc50d2482121813dab2e8c261f5e7141

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 505.6 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c117eceae229ebb1ae4051c791b33e21726e72aaa20bcbf4853bb7050e28541d
MD5 33b800c77c6367c7dfb5a7ee470099eb
BLAKE2b-256 951c665e0add4fd8f2bdab4fce6cb47cb55bae421b63927d0f854c66cb218b42

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 405.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1e72faf4830c03e6109ccb54f778a277b5467ba6c8829b7ca0e712abe41fac56
MD5 c60b9aeb3289453cb5fb01168b0ac38d
BLAKE2b-256 a91c1de93149e812e00693bc847987d5e5f1bfa8f3f4dacb42a1984ec6c38f5b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 316.0 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1805f89b0f4508b6f4d6ee0e73dc8e0fbaf713e8ed950576bde5bebe10620769
MD5 33e5c39c93b897787f7af6710d7d4ba6
BLAKE2b-256 6fbb75739331fafb3a50b5166ea9c4c86a832f53a1b9802aa0771e479376e946

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 675.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 b4b78e958efc12783f1a2f73b7e007905b9607da6323f05206660ad0f80a6ce2
MD5 c1378a2df217b9fb3c933e97420793a9
BLAKE2b-256 5ecc8ad564775c8d48bac2e267b498f2b5b7a0e3498e1f80250b886008c4954d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 684.4 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6388b9b48f037e77c0cba761f25a32a0a4e81ba053a2537e8f72a2d26ee55f1d
MD5 ab12d9c13a15793e855e3680364a8099
BLAKE2b-256 f6f8591738acd1e94b09b46fd5316ca5292920c3d88a4d62e87e81afb1fb1e5e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 608.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 480ae5b19da35d574267d4188e89a37d827f5c2fdd23f789d66340bbad413f60
MD5 398f7ed19071e4e317db51939c2134d6
BLAKE2b-256 799038f08ee4e8f2eedab6b40244f94bbc1f302539906edaba9c88237c2b0d58

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 703.0 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 7e8193433a8d261ed957d0cd0cb9ba86625fd1c943cf7b6101d64f2e0d5ac65c
MD5 a35e5fe6ad597902076d57dd21f20590
BLAKE2b-256 ddf6cc2ece50b13c8e787537695d609e163e3af81ce89cb2e4df6aebcc17d700

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-manylinux2010_i686.whl
  • Upload date:
  • Size: 720.8 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a4675412def09b8bbec1f41cd70714724a7c5176ee773c45700a2cb313e8e3a7
MD5 7c3e195da3d18e35a4c2508412a49051
BLAKE2b-256 ab120de8c69dc75feb16026e564c0abb802e8d4d9b7b4fd012d4f7450e565b6d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 703.0 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 31ba66ef88da0b2ff4bdff997a700366cfc44b23cd7fa1dfe827312107ec882e
MD5 f084a40d88b66d432b3451ce449f18ad
BLAKE2b-256 e26d5a8135979e307be24fef2ef79ca23f67096aafd60aadbf26cf027ad74af6

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 720.8 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 db2154d83e3ab7d04c88a2ddf66969e683c8897dc4281070d55ae4607c8e195f
MD5 abc94cdeb06b4c5eb6d5d4086515c099
BLAKE2b-256 83c7e60061b555812163b8a391ae2135d6e7ebb84bebbad9d7f0af4d09e2236e

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 507.1 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd939573b4ed7f1fd6fc424650c0643519f8af4c17667a71ec9f4764d5d526f1
MD5 24e808e0dc21659d053f32c3dfff6c65
BLAKE2b-256 aa68aef6008c576ce8a2bc5d22cabe0cc8e7e7013e615e9fced0770229f3a55d

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 400.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 eff246a156780c7f06f4da2471e8e4d73a362b82cca7166a6729356e1617b0c4
MD5 a6fe0db8af7c63736ef4987584ee8d29
BLAKE2b-256 2293ae9d944403246471094496badbdb8fd33c275382b0da7d0b4de37af00785

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 310.5 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 b1904d64197f3daee7e3bd4733c73d6a276320e084c4eeefc06e9f10d8fedc01
MD5 12aebf5a5c43ebef5005506ca8ecd562
BLAKE2b-256 90a75beb36eb7a63592c19591ffae324af1536cdca8fa73b4725677dee7a8ce1

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 662.3 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 08aaaf9983fba33684b0087dbbe1983a01c74679e1ad2908befa9f8b10d05d4e
MD5 89b2e41efd0fdcc6efb435d84c5210d5
BLAKE2b-256 e75329870d53e58c0608c15968fd344b3a3902fe358a08ae6f979f715ab94460

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 670.7 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 01497fb91418df417a786f0f9ccacb71c10cfa4eb323d63dc760e46d50f1d2e0
MD5 cb25870779247152dbf0cf721a9d140c
BLAKE2b-256 ca1b75311c8bbe5ef1e18a55a66b659d6d2267df011b5effc3709c13caf26e8f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 594.1 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 804b06d682708d5916ffbf99209f813ae009848dfb600dce33acd55777c5cc87
MD5 f2ed171f9cd5b78a85c2ea5a86bd7e21
BLAKE2b-256 8f1ef5742958b3207e737c557f00697ba5eee8e4b2402e04cee95c18b40f0dce

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 690.2 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 ae47c7e882e9988114cdfd69b58b79c8f3c6331c2a317e06b69daabd305b8b1d
MD5 24335d078d5f37a3f4020722967ddf36
BLAKE2b-256 996a9873b3516d809dfeb2ec0c7858abe49a82f98e490f763ffbdc39156b5945

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-manylinux2010_i686.whl
  • Upload date:
  • Size: 710.8 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 1464bc39ee5ba6e0c2ca5ae5f46a01afc0d9c06f3a8ed82267127581c4d921db
MD5 99679fd64a12c81695755abbc4425ff2
BLAKE2b-256 a4f9ad0aa135b06dcc3b9b00cd84c3057b11a67f23293904b9c2ed57666472f8

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 690.2 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f55795fbd3e0e167c7c335ca085ff29a677ecf12c51b817ff1c2fe4d96f99da5
MD5 e80809470900518aa08f7b6004b3af26
BLAKE2b-256 f943d764700c2aee0042346b6373e9d34a6ea0a133123a9eae163507f20f8821

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 710.8 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 5f7deae60df1720e35d10732a92165e98da86bf470aa41bb4a05cd46a370f80a
MD5 9b15e4224d16fe94af58493a374de9df
BLAKE2b-256 be5a410ea151b1beb64c23fba86dd066a4d843051770de64d5d03581fdb83c6f

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.3 kB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 363890a8327d7558a43c68b2abd4340d8998735f0bed83577ae6c67f79ef6586
MD5 9ffb3b259cc48b79a9c0ff1198d1578b
BLAKE2b-256 bf18c3d496a25f0d6e25d5f974b3b5d695d8d22084b4a3f9f71cb6461655bd2c

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 397.6 kB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 4c38ee0d27c541256c467d50d2bd1efdb3d29136e533df2060b3b26bf13827d5
MD5 c75a82718d0370622d103172ece419c4
BLAKE2b-256 6e8340690b6022bc430d3f342f9e80e899f805523135e0d0b5a54fbb33f5904a

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-win32.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 308.1 kB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 9b8ed030caff4d3ca2c65f73ec5ce77b4a54c6ded2e26e5903289f50aca1a73b
MD5 b740a9083a6a6498451db96f3c7998f8
BLAKE2b-256 00ea1b442b5101581100992526b628a02681736e997f2f10e4ea2da2fb54e6ea

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_s390x.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_s390x.whl
  • Upload date:
  • Size: 660.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3b85aed52e0b52b447b53127bc503b356e03875261bfd0bf0a0a0377b29d6ad9
MD5 ce1e5959ab65a232556ebc0ece10210d
BLAKE2b-256 84c63342777a1edc37c20244d81763347f7df4ab3c7263912f79c1de8acea9d0

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_ppc64le.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_ppc64le.whl
  • Upload date:
  • Size: 666.5 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 0d61b3107c0325e15660c54515aa446e8c758598e26405ef88bc09ed2599a2f7
MD5 f72545ac66b05828247e4d5304eb6017
BLAKE2b-256 784783cb10035f8c91fe070d5fc931d122710fba7576dff506d2dfa176f439b9

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_aarch64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_aarch64.whl
  • Upload date:
  • Size: 591.3 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc1b1b799f2810987aa4cccb759b96d807fc052c2aa83bba20d3532b22f3d44a
MD5 e6d848fc5f78507f205fba89139d5d5d
BLAKE2b-256 e5d0061169ee86e9ec20de2aaaa98adca63543e6465952747937556ef4df9b42

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 687.0 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 96946f3defe92e34532aa4a3f6a99255eba1684fef5dc7abe02a45f8c4d402ff
MD5 3eec83d781f29b167b9e9cf006345362
BLAKE2b-256 836cf04b8b7cadd6e488facfdfca3f5fc1f709314f84a98ae3e01d8b2d385c90

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-manylinux2010_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-manylinux2010_i686.whl
  • Upload date:
  • Size: 703.1 kB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3dda4d026419eddcae14003eac8384dd24e14ace8945e7b899428ae2deec85f4
MD5 238e615df7046d278c6fb790320b802f
BLAKE2b-256 04effb2ecf8438a0b7fa08897992b73cbbf302c54a6c613385da21c8aa62fc71

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 687.0 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 e930bc4953ddbda8d87079d4ad9fb74b068c46f6e7df174ae7dd054bb2d27870
MD5 7f63d6db74eaee461f2b989f9665b1c2
BLAKE2b-256 cf71998caddce679b3b28a0e581523755a8e8ea8b6a223e0de50c1055f7b2b0b

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 703.1 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 461083f36c2a179dbc550cbadae0af3c4a9ee59f35913af531213aec34683fcb
MD5 78453727f5d0ef98638d07d9c96036eb
BLAKE2b-256 84a7f579cd46a90bb7e540bd0c8d47e056b84fce1c940888c85cd8ab097610d4

See more details on using hashes here.

File details

Details for the file rapidfuzz-1.3.2-cp35-cp35m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: rapidfuzz-1.3.2-cp35-cp35m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 489.9 kB
  • Tags: CPython 3.5m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.7.3 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.9.2

File hashes

Hashes for rapidfuzz-1.3.2-cp35-cp35m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 88220d405f54c41798a4c6c0c70220b4e13b3eaa3e097b3f2d93a6e86e3caca1
MD5 e24a6793be10b2cdac8ff1081b5321d5
BLAKE2b-256 9db69cc7fc513fe6c000aa0fc734b6dc19d8be3644746e013cb3006e02dbe079

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page